| 研究生: |
林奕亨 Lin, Yi-Heng |
|---|---|
| 論文名稱: |
以液相化學法合成過渡金屬鈷碳化物應用於電解催化製氫之研究 Highly active electrocatalyst cobalt-carbide nanoparticles synthesized by wet-chemistry method for hydrogen evolution reaction |
| 指導教授: |
黃肇瑞
Huang, Jow-Lay |
| 共同指導教授: |
王聖璋
Wang, Sheng-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 氫能 、過渡金屬碳化物 、碳化鈷 、濕式化學法 、水解製氫 、電觸媒 |
| 外文關鍵詞: | Hydrogen energy, transition metal carbides, cobalt carbides, hydrogen evolution reaction, electrocatalyst |
| 相關次數: | 點閱:187 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氫能是具有前景的替代能源之一,水分解產氫(Hydrogen evolution reaction by water splitting)為其一關鍵製程,尋找高效能之非貴重金屬催化劑成為氫能是否能普及的關鍵。碳化鈷奈米粒子(Cobalt carbide nanoparticles, CoxC NPs, x=2,3)是一項相當新穎的材料,由理論計算值與近年研究顯示,其具有與Pt相似的電子結構,作為HER反應之電極其具有良好的電學性質、高導電性、耐酸性環境、高穩定性及高耐久性等優點。本研究成功利用相對低溫且無須加壓之濕式液相化學合成技術,藉由乙酸鈷(Cobalt(II) acetate)、三甘醇(Triethylene glycol)與氫氧化鈉,合成出CoxC (x=2, 3)複合相碳化鈷奈米晶體,但反應完成度較低,部分前驅物殘留,且結晶度不佳;當改以乙酸鈷、三甘醇及油胺(Oleylamine)做為原料時,其產物為結晶度較佳且均勻分散的純相Co2C奈米晶體,尺寸約為80 nm,兩者皆表現出高電催化活性。進一步將CoxC 與Co2C進行比較,藉由三電極系統進行電化學量測,CoxC製備之電極起始電位為 - 0.33V,塔弗斜率為91 mV/dec;而Co2C之起始電位為 - 0.27V,塔弗斜率為60mV/dec。於同樣的施加電壓下,Co2C電極表現出更高的電流密度,藉由電化學阻抗譜分析擬合出的等效電路,可得到電荷轉移電阻Rct (CoxC)=10.05 kΩ、Rct (Co2C)=6.02 kΩ,證明了Co2C能夠更有效的傳輸電荷。以上實驗結果證明了碳化鈷奈米粒子應用於催化水分解產氫反應上的潛力,未來可望藉由優化產物尺寸、載體結構或是摻雜等方式進一步改善材料表面性質,發展更低成本、高活性及穩定性之人造電催化產氫電極。
Hydrogen is a promising alternative energy without greenhouse gas emissions. Since the transition metal carbides (TMCs) exhibited similarly electronic properties with noble metal platinum, they are considered sustainable alternatives to noble metals in catalysis. Among the TMCs, CoxC (x=2,3) nanoparticles (NPs) can act as an excellent electrocatalyst for hydrogen evolution reaction (HER) by water splitting. In our report, CoxC nanocomposites were synthesized by wet chemistry method using Cobalt (II) acetate, sodium hydroxide as precursors and triethylene glycol (TEG) as solvent. In addition, Co2C NPs were synthesized by similar wet chemistry method using Cobalt (II) acetate as precursors and TEG, oleylamine (OAm) as solvent. The cobalt carbide NPs exhibited high electrocatalytic activity. CoxC nanocomposites performed a -0.33V onset potential and 91mV/dec tafel slope, while the Co2C NPs exhibited a better performance of -0.27V and 60mV/dec respectively.
[1] Q.P. Lu, Y.F. Yu, Q.L. Ma, B. Chen, H. Zhang, 2D Transition-Metal-Dichalcogenide-Nanosheet-Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions, Advanced Materials, 28 (2016) 1917-1933.
[2] N.Z. Muradov, T.N. Veziroglu, "Green" path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies, International Journal of Hydrogen Energy, 33 (2008) 6804-6839.
[3] A.B. Laursen, S. Kegnaes, S. Dahl, I. Chorkendorff, Molybdenum sulfides-efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution, Energ Environ Sci, 5 (2012) 5577-5591.
[4] S.-H. Jhi, J. Ihm, S.G. Louie, M.L. Cohen, Electronic mechanism of hardness enhancement in transition-metal carbonitrides, Nature, 399 (1999) 132.
[5] L.E. Toth, Transition metal carbides and nitrides, Academic Press, New York,, 1971.
[6] M. Naguib, J. Come, B. Dyatkin, V. Presser, P.-L. Taberna, P. Simon, M.W. Barsoum, Y. Gogotsi, MXene: a promising transition metal carbide anode for lithium-ion batteries, Electrochemistry Communications, 16 (2012) 61-64.
[7] S. Li, C. Yang, Z. Yin, H. Yang, Y. Chen, L. Lin, M. Li, W. Li, G. Hu, D. Ma, Wet-chemistry synthesis of cobalt carbide nanoparticles as highly active and stable electrocatalyst for hydrogen evolution reaction, Nano Research, 10 (2017) 1322-1328.
[8] X.J. Fan, Z.W. Peng, R.Q. Ye, H.Q. Zhou, X. Guo, M3C (M: Fe, Co, Ni) Nanocrystals Encased in Graphene Nanoribbons: An Active and Stable Bifunctional Electrocatalyst for Oxygen Reduction and Hydrogen Evolution Reactions, Acs Nano, 9 (2015) 7407-7418.
[9] E.J. Popczun, C.G. Read, C.W. Roske, N.S. Lewis, R.E. Schaak, Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles, Angew Chem Int Ed Engl, 53 (2014) 5427-5430.
[10] J. Cheng, P. Hu, P. Ellis, S. French, G. Kelly, C.M. Lok, Density Functional Theory Study of Iron and Cobalt Carbides for Fischer-Tropsch Synthesis, J Phys Chem C, 114 (2010) 1085-1093.
[11] M.E. Mchenry, S.A. Majetich, J.O. Artman, M. Degraef, S.W. Staley, Superparamagnetism in Carbon-Coated Co Particles Produced by the Kratschmer Carbon-Arc Process, Phys Rev B, 49 (1994) 11358-11363.
[12] Y. Zhang, G.S. Chaubey, C. Rong, Y. Ding, N. Poudyal, P.-c. Tsai, Q. Zhang, J.P. Liu, Controlled synthesis and magnetic properties of hard magnetic CoxC (x=2, 3) nanocrystals, Journal of Magnetism and Magnetic Materials, 323 (2011) 1495-1500.
[13] Z.J. Huba, E.E. Carpenter, A versatile synthetic approach for the synthesis of CoO, CoxC, and Co based nanocomposites: tuning kinetics and crystal phase with different polyhydric alcohols, Crystengcomm, 16 (2014) 8000-8007.
[14] M.D. Meganathan, S. Mao, T.Z. Huang, G.X. Sun, Reduced graphene oxide intercalated Co2C or Co4N nanoparticles as an efficient and durable fuel cell catalyst for oxygen reduction, J Mater Chem A, 5 (2017) 2972-2980.
[15] C. Wu, D. Liu, H. Li, J.H. Li, Molybdenum Carbide-Decorated Metallic Cobalt@Nitrogen-Doped Carbon Polyhedrons for Enhanced Electrocatalytic Hydrogen Evolution, Small, 14 (2018).
[16] I.R.E. Agency, Renewable Capacity Statistics 2019, Abu Dhabi, 2019.
[17] R. Bezman, A. Fujishima, K. Kohayakawa, K. Honda, Hydrogen Production under Sunlight with an Electrochemical Photocell, J Electrochem Soc, 123 (1976) 842-843.
[18] I.R.E. Agency, Solutions to integrate high shares of variable renewable energy, 2019.
[19] M. Momirlan, T.N. Veziroglu, The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet, International Journal of Hydrogen Energy, 30 (2005) 795-802.
[20] M.A. Abbas, J.H. Bang, Rising Again: Opportunities and Challenges for Platinum-Free Electrocatalysts, Chem Mater, 27 (2015) 7218-7235.
[21] M. Woydt, H. Mohrbacher, Friction and wear of binder-less niobium carbide, Wear, 306 (2013) 126-130.
[22] Y. Kumashiro, E. Sakuma, The Vickers Micro-Hardness of Nonstoichiometric Niobium Carbide and Vanadium Carbide Single-Crystals up to 1500-Degrees-C, J Mater Sci, 15 (1980) 1321-1324.
[23] Z.J. Huba, E.E. Carpenter, Size and phase control of cobalt–carbide nanoparticles using OH− and Cl− anions in a polyol process, Journal of Applied Physics, 111 (2012) 07B529.
[24] B.S. Yeo, A.T. Bell, Enhanced Activity of Gold-Supported Cobalt Oxide for the Electrochemical Evolution of Oxygen, Journal of the American Chemical Society, 133 (2011) 5587-5593.
[25] S.J. Peng, L.L. Li, X.P. Han, W.P. Sun, M. Srinivasan, S.G. Mhaisalkar, F.Y. Cheng, Q.Y. Yan, J. Chen, S. Ramakrishna, Cobalt Sulfide Nanosheet/Graphene/Carbon Nanotube Nanocomposites as Flexible Electrodes for Hydrogen Evolution, Angew Chem Int Edit, 53 (2014) 12594-12599.
[26] M. Claeys, M.E. Dry, E. van Steen, E. du Plessis, P.J. van Berge, A.M. Saib, D.J. Moodley, In situ magnetometer study on the formation and stability of cobalt carbide in Fischer-Tropsch synthesis, J Catal, 318 (2014) 193-202.
[27] M. Sarr, N. Bahlawane, D. Arl, M. Dossot, E. McRae, D. Lenoble, Atomic layer deposition of cobalt carbide films and their magnetic properties using propanol as a reducing agent, Appl Surf Sci, 379 (2016) 523-529.
[28] Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu, H.J. Fan, Transition Metal Carbides and Nitrides in Energy Storage and Conversion, Adv Sci (Weinh), 3 (2016) 1500286.
[29] F.M. Wang, T.A. Shifa, X.Y. Zhan, Y. Huang, K.L. Liu, Z.Z. Cheng, C. Jiang, J. He, Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting, Nanoscale, 7 (2015) 19764-19788.
[30] X.X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting, Chemical Society Reviews, 44 (2015) 5148-5180.
[31] T. Watanabe, A. Nakajima, R. Wang, M. Minabe, S. Koizumi, A. Fujishima, K. Hashimoto, Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass, Thin Solid Films, 351 (1999) 260-263.
[32] B.E. Conway, B.V. Tilak, Interfacial processes involving electrocatalytic evolution and oxidation of H-2, and the role of chemisorbed H, Electrochim Acta, 47 (2002) 3571-3594.
[33] A.J. Medford, A. Vojvodic, J.S. Hummelshoj, J. Voss, F. Abild-Pedersen, F. Studt, T. Bligaard, A. Nilsson, J.K. Norskov, From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis, J Catal, 328 (2015) 36-42.
[34] R.F. Boehm, H. Yang, J. Yan, Handbook of clean energy systems, John Wiley & Sons, Inc., Chichester, West Sussex, 2015.
[35] J.F. Xie, H. Zhang, S. Li, R.X. Wang, X. Sun, M. Zhou, J.F. Zhou, X.W. Lou, Y. Xie, Defect-Rich MoS2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution, Advanced Materials, 25 (2013) 5807-+.
[36] D.Y. Wang, M. Gong, H.L. Chou, C.J. Pan, H.A. Chen, Y.P. Wu, M.C. Lin, M.Y. Guan, J. Yang, C.W. Chen, Y.L. Wang, B.J. Hwang, C.C. Chen, H.J. Dai, Highly Active and Stable Hybrid Catalyst of Cobalt-Doped FeS2 Nanosheets-Carbon Nanotubes for Hydrogen Evolution Reaction, Journal of the American Chemical Society, 137 (2015) 1587-1592.
[37] T.K. Zhao, J.K. Zhang, Z. Du, Y.H. Liu, G.L. Zhou, J.T. Wang, Dopamine-derived N-doped carbon decorated titanium carbide composite for enhanced supercapacitive performance, Electrochim Acta, 254 (2017) 308-319.
[38] L. Liao, S.N. Wang, J.J. Xiao, X.J. Bian, Y.H. Zhang, M.D. Scanlon, X.L. Hu, Y. Tang, B.H. Liu, H.H. Girault, A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction, Energ Environ Sci, 7 (2014) 387-392.
[39] A.J. Bard, L.R. Faulkner, Electrochemical methods : fundamentals and applications, 2nd ed., Wiley, New York, 2001.
[40] Y.G. Li, H.L. Wang, L.M. Xie, Y.Y. Liang, G.S. Hong, H.J. Dai, MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction, Journal of the American Chemical Society, 133 (2011) 7296-7299.
[41] J.D. Benck, T.R. Hellstern, J. Kibsgaard, P. Chakthranont, T.F. Jaramillo, Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials, Acs Catalysis, 4 (2014) 3957-3971.
[42] J. Chen, B. Lim, E.P. Lee, Y. Xia, Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications, Nano Today, 4 (2009) 81-95.
[43] J. Greeley, T.F. Jaramillo, J. Bonde, I. Chorkendorff, J.K. Nørskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution, Nature materials, 5 (2006) 909-913.
[44] X. Huang, Z.Y. Zeng, S.Y. Bao, M.F. Wang, X.Y. Qi, Z.X. Fan, H. Zhang, Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets, Nature Communications, 4 (2013).
[45] Y.J. Wang, B.Z. Fang, H. Li, X.T.T. Bi, H.J. Wang, Progress in modified carbon support materials for Pt and Pt-alloy cathode catalysts in polymer electrolyte membrane fuel cells, Progress in Materials Science, 82 (2016) 445-498.
[46] E.J. Popczun, J.R. McKone, C.G. Read, A.J. Biacchi, A.M. Wiltrout, N.S. Lewis, R.E. Schaak, Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction, Journal of the American Chemical Society, 135 (2013) 9267-9270.
[47] Y. Zhao, F. Zhao, X. Wang, C. Xu, Z. Zhang, G. Shi, L. Qu, Graphitic Carbon Nitride Nanoribbons: Graphene‐Assisted Formation and Synergic Function for Highly Efficient Hydrogen Evolution, Angewandte Chemie International Edition, 53 (2014) 13934-13939.
[48] X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting, Chemical Society Reviews, 44 (2015) 5148-5180.
[49] Y. Zheng, Y. Jiao, L.H. Li, T. Xing, Y. Chen, M. Jaroniec, S.Z. Qiao, Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution, ACS nano, 8 (2014) 5290-5296.
[50] S.T. Oyama, Introduction to the chemistry of transition metal carbides and nitrides, in: S.T. Oyama (Ed.) The Chemistry of Transition Metal Carbides and Nitrides, Springer Netherlands, Dordrecht, 1996, pp. 1-27.
[51] D.J. Ham, Y.K. Kim, S.H. Han, J.S. Lee, Pt/WC as an anode catalyst for PEMFC: Activity and CO tolerance, Catal Today, 132 (2008) 117-122.
[52] R. Ganesan, J.S. Lee, Tungsten carbide microspheres as a noble-metal-economic electrocatalyst for methanol oxidation, Angew Chem Int Edit, 44 (2005) 6557-6560.
[53] D.J. Ham, R. Ganesan, J.S. Lee, Tungsten carbide microsphere as an electrode for cathodic hydrogen evolution from water, International Journal of Hydrogen Energy, 33 (2008) 6865-6872.
[54] H.A. Al-Megren, T. Xiao, S.L. Gonzalez-Cortes, S.H. Al-Khowaiter, M.L.H. Green, Comparison of bulk CoMo bimetallic carbide, oxide, nitride and sulfide catalysts for pyridine hydrodenitrogenation, J Mol Catal a-Chem, 225 (2005) 143-148.
[55] J.M. Lightstone, H.A. Mann, M. Wu, P.M. Johnson, M.G. White, Gas-phase production of molybdenum carbide, nitride, and sulfide clusters and nanocrystallites, J Phys Chem B, 107 (2003) 10359-10366.
[56] V.G. Harris, Y. Chen, A. Yang, S. Yoon, Z. Chen, A.L. Geiler, J. Gao, C.N. Chinnasamy, L.H. Lewis, C. Vittoria, E.E. Carpenter, K.J. Carroll, R. Goswami, M.A. Willard, L. Kurihara, M. Gjoka, O. Kalogirou, High coercivity cobalt carbide nanoparticles processed via polyol reaction: a new permanent magnet material, Journal of Physics D: Applied Physics, 43 (2010) 165003.
[57] S. Bukola, B. Merzougui, S.E. Creager, M. Qamar, L.R. Pederson, M.N. Noui-Mehidi, Nanostructured cobalt-modified molybdenum carbides electrocatalysts for hydrogen evolution reaction, International Journal of Hydrogen Energy, 41 (2016) 22899-22912.
[58] Y.H. Zhao, H.Y. Su, K.J. Sun, J.X. Liu, W.X. Li, Structural and electronic properties of cobalt carbide Co2C and its surface stability: Density functional theory study, Surface Science, 606 (2012) 598-604.
[59] K.J. Carroll, Z.J. Huba, S.R. Spurgeon, M.C. Qian, S.N. Khanna, D.M. Hudgins, M.L. Taheri, E.E. Carpenter, Magnetic properties of Co2C and Co3C nanoparticles and their assemblies, Appl Phys Lett, 101 (2012).
[60] V.K. Portnoi, A.V. Leonov, Mechanochemical synthesis of Co-C materials, Inorg Mater+, 48 (2012) 593-600.
[61] Z.H. Wang, C.J. Choi, B.K. Kim, J.C. Kim, Z.D. Zhang, Characterization and magnetic properties of carbon-coated cobalt nanocapsules synthesized by the chemical vapor-condensation process, Carbon, 41 (2003) 1751-1758.
[62] J. Larsenbasse, Effect of Composition, Microstructure, and Service Conditions on the Wear of Cemented Carbides, Jom-J Min Met Mat S, 35 (1983) 35-42.
[63] G.E. Hollox, Microstructure and Mechanical Behavior of Carbides, Mater Sci Eng, 3 (1968) 121-&.
[64] S. Dutta, A. Indra, H. Han, T. Song, An Intriguing Pea-Like Nanostructure of Cobalt Phosphide on Molybdenum Carbide Incorporated Nitrogen-Doped Carbon Nanosheets for Efficient Electrochemical Water Splitting, Chemsuschem, 11 (2018) 3956-3964.
[65] M. Villalba, J. Peron, M. Giraud, C. Tard, pH-dependence on HER electrocatalytic activity of iron sulfide pyrite nanoparticles, Electrochemistry Communications, 91 (2018) 10-14.
[66] V.A. Drits, D.D. Eberl, J. Srodon, XRD measurement of mean thickness, thickness distribution and strain for illite and illite-smectite crystallites by the Bertaut-Warren-Averbach technique, Clay Clay Miner, 46 (1998) 38-50.
[67] D. Cabrera-German, G. Gomez-Sosa, A. Herrera-Gomez, Accurate peak fitting and subsequent quantitative composition analysis of the spectrum of Co 2p obtained with Al K radiation: I: cobalt spinel, Surf Interface Anal, 48 (2016) 252-256.
[68] R. Tang, S.J. Zhou, Z.M. Yuan, L.W. Yin, Metal-Organic Framework Derived Co3O4/TiO2/Si Heterostructured Nanorod Array Photoanodes for Efficient Photoelectrochemical Water Oxidation, Adv Funct Mater, 27 (2017).
[69] J.M. Xiong, Y.J. Ding, T. Wang, L. Yan, W.M. Chen, H.J. Zhu, Y. Lu, The formation of Co2C species in activated carbon supported cobalt-based catalysts and its impact on Fischer-Tropsch reaction, Catalysis Letters, 102 (2005) 265-269.
[70] D. Wilson, M.A. Langell, XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature, Appl Surf Sci, 303 (2014) 6-13.
[71] L.L. Feng, Z.W. Xuan, H.B. Zhao, Y. Bai, J.M. Guo, C.W. Su, X.K. Chen, MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery, Nanoscale Res Lett, 9 (2014).
[72] Q. Quo, F. Liang, X.Y. Gao, Q.C. Gan, X.B. Li, J. Li, Z.S. Lin, C.H. Tung, L.Z. Wu, Metallic Co2C: A Promising Co-catalyst To Boost Photocatalytic Hydrogen Evolution of Colloidal Quantum Dots, Acs Catalysis, 8 (2018) 5890-5895.
[73] X. Ma, K. Li, X. Zhang, B. Wei, H. Yang, L. Liu, M. Zhang, X. Zhang, Y. Chen, The surface engineering of cobalt carbide spheres through N, B co-doping achieved by room-temperature in situ anchoring effects for active and durable multifunctional electrocatalysts, J Mater Chem A, 7 (2019) 14904-14915.
[74] K. Jun-Hyuk, K. Kenta, W. Bryan R., M. Oluwaniyi, L. Yang, W. Joy H., M. C. Buddie, Transformation of a Cobalt Carbide (Co<sub>3</sub>C) Oxygen Evolution Precatalyst, 2018.
[75] T. Meng, Y.N. Hao, L.R. Zheng, M.H. Cao, Organophosphoric acid-derived CoP quantum dots@S,N-codoped graphite carbon as a trifunctional electrocatalyst for overall water splitting and Zn-air batteries, Nanoscale, 10 (2018) 14613-14626.
[76] J. Li, G. Liu, L. Shi, Q. Xing, F. Li, Cobalt modified N-doped carbon nanotubes for catalytic CC bond formation via dehydrogenative coupling of benzyl alcohols and DMSO, Green Chem, 19 (2017) 5782-5788.
[77] Y. Zhang, L. Gao, E.J.M. Hensen, J.P. Hofmann, Evaluating the Stability of Co2P Electrocatalysts in the Hydrogen Evolution Reaction for Both Acidic and Alkaline Electrolytes, Acs Energy Lett, 3 (2018) 1360-1365.