| 研究生: |
史品凡 Shih, Pin-Fan |
|---|---|
| 論文名稱: |
應用無溫度效應式光纖光柵設計新型光纖感測掃描系統 Design on New Fiber Sensing Scanner System Based on A-thermal Fiber Bragg Grating |
| 指導教授: |
羅裕龍
Lo, Yu-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 高精細度 、法布里-珀羅干涉儀 、無溫度效應式光纖光柵 |
| 外文關鍵詞: | high-finesse, Fabry–Pérot interferometer, A-thermal FBG |
| 相關次數: | 點閱:86 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究基於多光束干涉及穿透式高精細度Fabry–Pérot干涉儀,利用鍍上介電質薄膜的方式,使共振腔內兩光纖端面反射率提高至95 % 左右,並藉以提高精細度 (Finesse),此種型態之干涉儀非常適合用來當作訊號掃描使用,市面上已有將此技術運用在光纖訊號之掃描上,然而其波長範圍為1510 nm ~ 1590 nm而適用溫度為0°C ~ 50°C。
本研究自行設計相關參數並對設計值做了初步模擬後發現,可以達到波長範圍為1516 nm ~ 1620 nm,對於溫度造成之頻譜飄移也引入無溫度效應式光纖光柵 (A-thermal FBG) 來標定光纖光柵感測器之相對位置,並作一系列對於溫度與標定位置之模擬分析,最後定義出適用溫度為 - 40°C ~ 50°C。
由於PZT的遲滯現象,在進行訊號掃描時常常發生同一根感測器卻有不同波長的現象。有鑒於此,採用3階多項式來作曲線擬合,建立驅動電壓與穿透波長之關係,並以此為參考值來做掃描的補償。此外,也利用LabVIEW自行撰寫介面,經測試後介面可以與DAQ卡連結並作一系列訊號擷取、校正、應變判讀的功能。此系統之研發成功,可提供日後國內相關產業在生產上之設計與應用參考。
This study is based on multi-beam interference and transmission high-finesse Fabry-Perot interferometer. In order to improve the reflection on fiber, we use the coating technology. This type of interferometer is very suitable for scanning the fiber Bragg grating signals. In the foreign country, this technology has been used to scan the fiber Bragg grating signals with the wavelength range of 1510nm to 1590nm and the operating temperature of 0°C to 50°C.
In this study, the attempt is to achieve a cost-down interrogation system. The core of interrogation system is the high finesse transmitted Fabry-Perot interferometer, and the system is designed for improvement. After simulation, the wavelength range of the system can be confirmed in 1516nm to 1620nm. For the effects of temperature, the A-thermal fiber grating to extract the correction positions of FBGs is introduced. Furthermore, we analyzed the temperature and extracted the positions of FBGs, and defined the operating temperature from -40°C to 50°C. For the PZT calibration, the three-order polynomial curve fitting to model the relation between driving voltage and transmission wavelength of a Fabry-Perot scanner is applied. In the software application, we use LabVIEW program for signal processing and PZT calibration for our own design. Finally, a new interrogator with an A-thermal FBG as a reference in sensing FBG sensors is demonstrated successfully.
Fender, A., Rigg, E. J., Maier, R. R. J., MacPherson, W. N., Barton, J. S., Moore, A. J., Jones, J. D. C., Zhao, D., Zhang, L., Bennion, I., McCulloch, S., and Jones, B. J. S., “Dynamic two axis curvature measurement using multicore fiber Bragg gratings interrogated by arrayedwaveguide grating,” Appl. Opt., vol. 45, no. 36, pp. 9041–9048, Dec. 2006.
Fu, J.W., Xiao, L.Z., Zhang, Y.Z., Zhao, X.L. and Chen, H.F., “A New Method for Fiber Bragg Grating Wavelength Demodulation with Calibration,” Proc. SPIE, vol. 6027, pp. 441–448, January 2006.
Gong, J. M., MacAlpine, J. M. K., Chan, C. C., Jin, W., Zhang, M. and Liao, Y. B., “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett., vol. 14, no. 5,
pp. 678–680, May 2002.
Jiang, Y. and Tang, C., “High-finesse microlens optical fiber Fabry-Pérot filters,” Microwave Opt. Technol. Lett. 50(9), 2386–2389,2008.
Jiang, Y., “High-resolution interrogation technique for fiber optic extrinsic Fabry-Pérot interferometric sensors by the peak-to-peak method,” Appl. Opt. 47(7), 925–932 ,2008.
Kato, C. C., Valente, L. C. G., Olivieri, B. S., Braga, A. M. B., Triques, A. L. C. and Ribeiro, A. S., “Time-encoded WDM technique for multiple Bragg grating sensors interrogation,” Proc. SPIE, vol. 5855, pp. 984–987, May 2005.
Kersey, A. D., Davis, M. A., Patrick, H. J., LeBlane, M., Koo, K. P., Askins, C. G., Putnam, M. A. and Friebele, E. J., “Fiber grating sensors,” J. Lightw. Technol., vol. 15, no. 8, pp. 1442–1463, Aug. 1997.
Kersey, Alan D., Berkoff, T. A., and Morey, W. W., "Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry—Perot wavelength filter." Optics letters 18.16 pp.1370-1372, 1993.
Liu, K., Jing, W.C., Peng, G.D., Zhang, J.Z., Jia, D.G., Zhang, H.X. and Zhang, Y.M., “Investigation of PZT driven tunable optical filter nonlinearity using FBG optical fiber sensing system,” Optics Communications Vol.281, Issue 12,pp. 3286–3290 15 June 2008,
Liou, Y. Y., “Tuning Iteration Method for Antireflection Coating Designs in the Visible Spectral Region,” Jpn. J. Appl. Phys., 43, pp. 547-549, 2004.
Miller, C. and Janniello, F., “Passively temperature-compensated fiber Fabry-Perot filter and its application in wavelength division multiple access computer networks,” Electron. Letter, vol. 26, pp. 2122–2123,1990
Macleod, H. A., Thin-Film optical filters, Taylor & Francis, 2001.
Madhav, K. V., and Asokan, S., “Spectrum estimation by wavelength shift time-stamping in a fiber Bragg grating sensor,” IEEE Photon. Technol. Lett., vol. 16, no. 5, pp. 1355–1357, May 2004.
Melle, S. M., Liu, K., and Measures, R. M.,“A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett., vol. 4, no. 5, pp. 516–518, May 1992.
Rivera, E. and Thomson, D. J., “Accurate strain measurements with fiber Bragg sensors and wavelength references,” Smart Materials & Structures, vol. 15, pp. 325–330, Apr. 2006.
Srinivas, T., Madan, T., Kumar, V. S., Kumar, T. K., and Selvarajan, A., “A novel interrogation system for fiber Bragg grating sensor array,” Proc. SPIE, vol. 4833, pp. 184–190, 2002.
Sano, Y. and Yoshino, T., “Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber Bragg grating sensors,” J. Lightw. Technol., vol. 21, no. 1, pp. 132–139, 2003.
Todd, M. D., Johnson, G. A., and Althouse, B. L., “A novel Bragg grating sensor interrogation system utilizing a scanning filter, a Mach–Zehnder interferometer and a 3x3 coupler,” Meas. Sci. Technol., vol. 12, pp. 771–777, Jan. 2001.
Tsai, Patrick, Sun, F.G., Xiao, G.Z., Zhang, Z.Y., Rahimi, Somayyeh, and Ban, Dayan, “A New Fiber-Bragg-Grating Sensor Interrogation System Deploying Free-Spectral-Range-Matching Scheme With High Precision and Fast Detection Rate,” IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 20, NO. 4, FEBRUARY 15, 2008.
Wu, F., Cai, Y., Cai, L., Huang, L., and Li, Z., “Study of fiber Bragg grating sensor system based on OFDR/WDM,” Proc. SPIE, vol. 6150, pp. 615022–615025, May 2006.
Zhou, K., Simpson, A. G., Chen, X., Zhang, L., and Bennion, I., “Fiber Bragg grating sensor interrogation system using a CCD side detection method with superimposed blazed gratings,” IEEE Photon. Technol. Lett., vol. 16, no. 6, pp. 1549–1551, Jun. 2004.
校內:2019-01-27公開