| 研究生: |
陳品宏 Chen, Pin-Hong |
|---|---|
| 論文名稱: |
以 Shewanella oneidensis 構成之微生物型燃料電池系統於電池槽體設計與電能效應之探討 Investigation of power efficiency and cell-reactor design from the microbial biofuel cell system comprised by Shewanella oneidensis |
| 指導教授: |
許梅娟
Syu, Mei-Jywan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 微生物燃料電池 、Rhodopseudomonas sphaeroides 、Shewanella oneidensis 、pyrrole-3-carboxylic acid 、碳紙 、反應器模組 、氧化還原對 |
| 外文關鍵詞: | Microbial fuel cell, Rhodopseudomonas sphaeroides, Shewanella oneidensis, pyrrole-3-carboxylic acid, carbon paper, configuration, mediator |
| 相關次數: | 點閱:109 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類對於石化能源的依賴與日俱增,且隨著地球人口增加以及歷經石油危機後,尋求新的替代能源已成為目前全人類共同努力的目標。而除了風力、地熱、太陽能等這些綠色能源以外,微生物燃料電池也是目前各界研究新能源的主題之一。自然界中光合菌與部分腐生菌可藉由其代謝過程產生氫離子,進而產生電流。而本論文中研究光合菌Rhodopseudomonas sphaeroides和腐生菌Shewanella oneidensis在微生物燃料電池系統中的發電潛力;另外以碳紙為燃料電池電極之基材,以導電性單體pyrrole和其衍生物pyrrole-3-carboxylic acid (P3CA) 形成導電性共聚高分子以固定酵素並修飾電極表面。以SEM觀察經導電性高分子共聚物修飾後之電極表面型態,可用來比較不同聚合條件對電極表面之影響,同時以電化學分析儀來分析各種操作條件下燃料電池之發電功率與輸出電流;並以交流阻抗分析儀來分析模擬不同燃料電池反應器之內部阻抗。
除了以燃料電池之發電功率判斷不同電極材料對系統的影響;亦以不同燃料電池反應器之設計模組進行比較,包括雙槽式燃料電池系統與單槽式燃料電池系統在發電功率與輸出電流之差異,其中單槽式燃料電池系統的表現較優異可以達到6,500 mW/m3之最大功率輸出。在雙槽式燃料電池系統中,也進行了不同電極面積以及不同電極間距對燃料電池輸出功率之影響。燃料電池系統加入不同碳源與不同氧化還原對 (mediator) 後之發電效率影響亦於本文中予以比較。
In recent years, human being relies on petroleum energy more than that in early cen-turies causing the shortage of fussed fuels. Thus, new energy must be used to replace it es-pecially in the situations of terribly increasing population number. Microbial fuel cell is the way in the study for the power generation to overcome the problems above. Two bacteria species, photosynthetic Rhodopseudomonas sphaeroides and shewanella oneidensis, were used in the microbial fuel cell system because of metabolised hydrogen ion produced by. Besides the microbials, carbon paper was chosen as the base material of electrodes, and it was modified by electroconducting-polymers, pyrrole and pyrrole-3-carboxylic acid (P3CA), because of their great conductivity. The surface of electrode constructed was ex-amined by SEM image for the comparison of different electropolymerization conditions. Finally, the output power density from microbial fuel cell and inner resistance was tested by electroanalytical instrument, potential stat and AC impedance.
We designed different configurations for the microbial fuel cell reactor system in-cluding single chamber and duel chamber. The performance of single chamber system is better than that of duel chamber system, and the output power density of single chamber system could reach 6,500 mW/m3. Through the research of duel chamber system, the elec-trode area and the distance between electrodes was confirmed to be the effecting factors in these result. The effect of adding different carbon resources and mediators in electrolyte for microbial fuel cell functioning was also tested.
[1] J.M. Andujar, F. Segura ,Fuel cells: History and updating. A walk along two centuries, Renewable and Sustainable Energy Reviews 13 2309–2322, 2009.
[2] A. Boudghene Stambouli, E. Traversa Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy, Renewable and Sustain-able Energy Reviews, 6 (5) 433–455, 2002.
[3] Jung-Ho Wee, Applications of proton exchange membrane fuel cell systems, Renew-able and Sustainable Energy Reviews 11 1720–1738, 2007.
[4] Fuyuki Sato, Makoto Togo, Mohammed Kamrul Islam, Tomokazu Matsue, Junichi Kosuge, Noboru Fukasaku, Satoshi Kurosawa, Matsuhiko Nishizawa, Enzyme-based glucose fuel cell using Vitamin K3-immobilized polymer as an electron mediator, Electrochemistry Communications 7 643–647, 2005.
[5] Jin Young Lee, Hyun Yong Shin, Seong Woo Kang, Chulhwan Park, Seung Wook Kim, Application of an enzyme-based biofuel cell containing a bioelectrode mod-ified with deoxyribonucleic acid-wrapped single-walled carbon nanotubes to serum, Enzyme and Microbial Technology 48 80–84, 2011.
[6] S. Venkata Mohan, S. Veer Raghavulu, P.N. Sarma, Biochemical evaluation of bio-electricity production process from anaerobic wastewater treatment in a single chambered microbial fuel cell (MFC) employing glass wool membrane, Biosensors and Bioelectronics 23 1326–1332, 2008.
[7] Manuel A. Rodrigo, Pablo Canizares, Justo Lobato, Effect of the electron-acceptors on the performance of a MFC, Bioresource Technology 101 7014–7018, 2010.
[8] Jung Rae Kim, Giuliano C. Premier, Freda R. Hawkes, Richard M. Dinsdale, Alan J. Guwy, Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode, Journal of Power Sources 187 393–399, 2009.
[9] Chontisa Sukkasem, Shoutao Xu, Sunhwa Park, Piyarat Boonsawang, Hong Liu, Effect of nitrate on the performance of single chamber air cathode microbial fuel cells, water research 42 4743 – 4750, 2008.
[10] Almeida, J.S., Julio, S.M., Reis, M.A.M., Carrondo, M.J.T., Nitrite inhibition of de-nitrification by Pseudomonas fluorescens. Biotechnology Bioengineering 46,
194–201, 1995.
[11] H. Liu, S. Cheng, B.E. Logan, Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration, Environmental Science Technology 39 5488–5493, 2005.
[12] Bradley R. Ringeisen, Ricky Ray, Brenda Little, A miniature microbial fuel cell op-erating with an aerobic anode chamber, Journal of Power Sources 165 591–597, 2007.
[13] M.M. Ghangrekar, V.B. Shinde, Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity produc-tion, Bioresource Technology 98 2879–2885, 2007.
[14] Magnuson, T.S., Hodges Myerson, A.L., Lovely, D.R., Characterization of the membrane-bound NADH-dependent Fe(III) reductase from the dissmilatory Fe(III)-reducing bacterium geobacteria sulphur reducens. FEMS Microbial. Lett 185, 205–211, 2000.
[15] Adam J. Hutchinson, Justin C. Tokash, Bruce E. Logan, Analysis of carbon fiber brush loading in anodes on startup and performance of microbial fuel cells, Journal of Power Sources 196 9213–9219, 2011.
[16] Mohammed H. Al-Saleh, Uttandaraman Sundararaj, A review of vapor grown
carbon nanofiber/polymer conductive composites, carbon 47 2 –22, 2009.
[17] Saïd Sadki, Philippe Schottland, Nancy Brodie and Guillaume Sabourau, The mechanisms of pyrrole electropolymerization, Chem. Soc. Rev., 29, 283–293, 2000. [18] Yong Yuan, Shungui Zhou, Li Zhuang, Polypyrrole/carbon black composite as a novel oxygen reduction catalyst for microbial fuel cells, Journal of Power
Sources 195, 3490-3493, 2010.
[19] Yongjin Zou, John Pisciotta, Ilia V. Baskakov, Nanostructured polypyrrole-coated anode for sun-powered microbial fuel cells, Bioelectrochemistry 79, 50–56, 2010.
[20] Ronib M. Allen, H. Peter Bennetto, Electricity Production from Carbohydrates, Ap-plied Biochemistry and Bioteehnology Vol. 39/40, 1993.
[21] Rashmi Chandra, G. Venkata Subhash, S. Venkata Mohan, Mixotrophic operation of photo-bioelectrocatalytic fuel cell under anoxygenic microenvironment enhances the light dependent bioelectrogenic activity, Bioresource Technology 109, 46–56, 2012.
[22] Kartik S. Madiraju, Darwin Lyew, Robert Kok, Vijaya Raghavan, Carbon neutral electricity production by Synechocystis sp. PCC6803 in a microbial fuel cell, Biore-source Technolog. 2012.
[23] Miriam Rosenbaum, Zhen He, Largus T Angenent, Light energy to bioelectricity: photosynthetic microbial fuel cells, Current Opinion in Biotechnology, 21:259–264 , 2010.
[24] Justin C. Biffinger, Ricky Ray, Brenda J. Little, Lisa A. Fitzgerald, Meghann Rib-bens, Steven E. Finkel, Bradley R. Ringeisen, Simultaneous Analysis of Physiologi-cal and Electrical Output Changes in an Operating Microbial Fuel Cell With She-wanella oneidensis, Biotechnology and Bioengineering, Vol. 103, No. 3, June 15, 2009
[25] P.M. Ayyasamy, S. Chun, S. Lee, Desorption and dissolution of heavy metals from contaminated soil using Shewanella sp. (HN-41) amended with various carbon sources and synthetic soil organic matters, J. Hazard. Mater. 161,1095–1102, 2009.
[26] Z. Dawood, V.S. Brozel, Corrosion-enhancing potential of Shewanella putrefaciens isolated from industrial cooling waters, J. Appl. Microbiol. 84, 929–936, 1998.
[27] Anand Jain, Xiaoming Zhang, Gabriele Pastorella, Jack O. Connolly, Niamh Barry, Robert Woolley, Satheesh Krishnamurthy, Enrico Marsili, Electron transfer me-chanism in Shewanella loihica PV-4 biofilms formed at graphite electrode, Bioelec-trochemistry, 2012.
[28] Gregory J. Newton, Shigeki Mori, Ryuhei Nakamura, Kazuhito Hashimoto, Kazuya Watanabe, Analyses of Current-Generating Mechanisms of Shewanella loihica PV-4 and Shewanella oneidensis MR-1 in Microbial Fuel Cells, Appl. Environ. Microbiol., 75(24):7674, 2009
[29] Jeanine S Geelhoed, Hubertus VM Hamelers, Alfons JM Stams, Electrici-ty-mediated biological hydrogen production, Current Opinion in Microbiology, 13:307–315, 2012
[30] Sibel D. Roller, H. Peter Bennetto, Gerard M. Delaney, Jeremy R. Mason, John L. Stirling and Christopher F. Thurston, Electron-transfer Coupling in Microbial Fuel Cells: 1. Comparison of Redox-mediator Reduction Rates and Respiratory Rates of Bacteria, J. Chem. Tech. Biotechnol., 34B, 3-12, 1984.
[31] 江奇儒,聚砒洛奈米碳管複合材料固定酵素電極於葡萄糖/氧生物燃料電池系統之應用,國立成功大學化學工程學系碩士論文 (2007)
[32] Mei-Jywan Syu, Yu-Sung Chang, ‘Ionic effect investigation of a potenti- ometric sensor for urea and surface morphology observation of entrapped urease/polypyrrole matrix’, Biosensors and Bioelectronics 24, 2671–2677, 2009
[33] Alan G. MacDiarmid. Nobel Prize 2000 Lecture ‘Synthesis Metals’: a novel role for organic polymers. Current Applied Physics 1, 269-279, 2009.
[34] 楊明長,分析電化學課程講義,國立成功大學化學工程學系,2010
校內:2027-06-01公開