簡易檢索 / 詳目顯示

研究生: 簡嘉佑
Chien, Chia-Yu
論文名稱: 運動素結構之模擬分析
Analysis and simulation of the kinesin structure
指導教授: 黃明哲
Huang, Ming-Jer
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 57
中文關鍵詞: 動力衝程運動素催化核心
外文關鍵詞: neck linker, catalytic core, kinesin, power stroke
相關次數: 點閱:61下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   運動素(Kinesin)是目前已知結構為最簡單的細胞骨架馬達蛋白,在細胞內沿著微管行走,負責運輸小囊胞、胞器、神經傳導物質或是細胞分裂時運送染色體。本文建立一套運動素模擬機構,模擬運動素前進過程中最重要的產力機制—動力衝程,採用數學理論分析其位移量、角速度、速度以及功率,並與文獻之實驗數據做比較。
      本文的模擬機構,可以合理解釋運動素具有機械的放大性質,當外力負載增加時,模擬機構的角速度與速度會呈下降趨勢,此結果與實驗數據相符合,據此可驗證此模擬結構具有對運動素的運動機制之可預測性與合理性。

      Kinesin is a cytoskeleton-based motors that has the most simple structure. It moves vesicle or organelle along the microtubules toward plus end. In this paper, we construct a model to simulate the position, angular velocity, velocity, and power in the power stroke process of kinesin. We use the theoretical analysis to compare with the other’s experimental data.

      The simulate mechanism in this paper would explain the kinesin’s mechanical amplifier reasonable. When the external force raise, the angular velocity and velocity of the simulate model is decreased. The result is fitted the experimental data. We prove that the simulate mechanism model provide rationality and projection.

    目錄 頁次 摘要……………………………………………………………………Ⅰ 英文摘要………………………………………………………………Ⅱ 誌謝……………………………………………………………………Ⅲ 目錄……………………………………………………………………Ⅳ 表目錄…………………………………………………………………Ⅶ 圖目錄…………………………………………………………………Ⅷ 符號說明………………………………………………………………Ⅹ 第一章 緒論 1-1 前言……………………………………………………1 1-2 研究動機與目的………………………………………2 1-3 文獻回顧………………………………………………3 第二章 生物分子馬達簡介與運動素運動機制說明 2-1 生物分子馬達簡介……………………………………6 2-1-1 細胞骨架馬達蛋白—肌凝蛋白……………9 2-1-2 核酸馬達蛋白—核酸解旋酶………………10 2-1-3 旋轉性馬達蛋白—細菌鞭毛馬達…………11 2-1-4 總結…………………………………………13 2-2 運動素運動機制說明………………………………13 2-2-1 運動素與微管功能…………………………13 2-2-2 運動素與微管結構…………………………14 2-2-3 運動素的運動原理…………………………15 2-3 運動素產生動力衝擊(Power Stroke)的過程……16 2-3-1 核苷酸口袋與ATP分子的結合力來源……16 2-3-2 催化核心的機械放大機制…………………18 第三章 運動素機構的模擬與數學理論分析 3-1 運動素機構的模擬…………………………………20 3-1-1 運動素結構的幾何關係……………………20 3-1-2 建立運動素動力衝程機構…………………21 3-2 數學理論分析………………………………………22 3-2-1 自由度分析…………………………………22 3-2-2 位移分析……………………………………23 3-2-3 速度分析……………………………………24 第四章 結果與討論 4-1 位移量………………………………………………28 4-2 角速度分布…………………………………………28 4-3 速度分布……………………………………………29 4-4 功率分布……………………………………………30 第五章 結論與未來研究方向 5-1 結論…………………………………………………31 5-2 未來研究方向………………………………………32 參考文獻………………………………………………………………34

    參考文獻

    1. S. M. Block, L. S. Goldstein, and B. J. Schnapp (1990). Bead movement bysingle kinesin molecular with optical tweezers. Nature 48, 348-352.

    2. E. Berliner, E. C. Young, K. Anderson, H. K. Mahtani, and J. Gelles (1995). Failure of a single-headed kinesin to track parallel to microtubule protofilaments. Nature 373, 718-721.

    3. D. D. Hackney (1995). Highly processive microtubule-stimulated ATP hydrolysis by dimeric kinesin head domains. Nature 377, 448- 450.

    4. F. J. Kull, E. P. Sablin, R. Lau, R. J. Fletterick, and R. D. Vale (1996). Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380, 550-555.

    5. M. J. Schnitzer and S. M. Block (1997). Kinesin hydrolyses one ATP per 8-nm step. Nature 388, 386-390.

    6. S. Sack, J. Muller, A. Marx, M. Thormahlen, E. M. Mandelkow, S. T. Brady, and E. Mandelkow (1997). X-ray structure of motor and neck domains from rat brain kinesin. Biochemistry 36, 16155- 16165.

    7. N. Hirokawa (1998). Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519-526.

    8. S. Rice, A. W. Lin, D. Safer, C. L. Hart, N. Naberk, B. O. Carragher, S. M. Cain, E. Pechatnikova, E. M. Wilson-Kubalek, M. Whittaker, E. Pate, R. Cooke, E. W. Taylor, R. A. Milligan, and R. D. Vale (1999). A structural change in the kinesin motor protein that drives motility. Nature 402, 778-784.

    9. R. D. Vale, E. Sabin, R. Case, C. Hart, and R. Fletterick (2000). Searching for kinesin’s mechanical amplifier. Phil. Trans. R. Soc. Lond. B. 355, 449-457.
    10. R. D. Vale and R. A. Milligan (2000). The way things move: looking under the hood of molecular motor proteins. Science 288, 88-95.

    11. M. Kikkawa, E. P. Sablin, Y. Okada, H. Yajima, R. J. Fletterick, and N. Hirokawa (2001). Switch-based mechanism of kinesin motors. Nature 411, 439-445.

    12. A. Mogilner, A. J. Fisher, and R. J. Baskin (2001). Structural changes in the neck linker of kinesin explain the load dependence of the motor’s mechanical cycle. J. theor. Biol. 211, 143-157.

    13. F. Kozielski, S. Sack, A. Marx, M. Thormahlen, E. Schonbrunn, V. Biou, A. Thompson, E. M. Mandelkow, and E. Mandelkow (1997). The crystal structure of dimeric kinesin and implications for microtubule-dependent motility. Cell 91, 985-994.

    14. A. J. Kim and S. A. Endow (2000). A kinesin family tree. Journal of Cell Science 113, 3681-3682.

    15. D. P. Clark and L. D.Russell (2000). Molecular biology- made simple and fun 2/e. Cache River Press, 63-65.

    16. K. Shipley, M. H. Nejad, J. Turner, C. Moores, R. Anderson, R. Milligan, R. Sakowicz, and R. Fletterick (2004). Structure of a kinesin microtubule depolymerization machine. The EMBO Journal 23, 1422-1432.

    17. Y. H. Song, A. Marx, J. Muller, G. Woehlke, M. Schliwa, A. Krebs,
    A. Hoenger, and E. Mandelkow (2001). Structure of a fast kinesin implications for ATPase mechanism and interactions with microtubules. The EMBO Journal 22, 6213-6225.

    18. S. Sack, F. J. Kull, and E. Mandelkow (1999). Motor proteins of the kinesin family:Structures, variations, and nucleotide binding sites. Eur. J. Biochem. 262, 1-11.

    19. W. O. Hancock and J. Howard (1998). Processivity of the motor protein kinesin requires two head. The Journal of Cell Biology 140, 1395-1405.

    20. M. Nishiyama, H. Higuchi, and T. Yanagida (2002). Chemomechanical coupling of the forward and backward steps of single kinesin molecules. Nature cell biology 4 , 790-797.

    下載圖示 校內:立即公開
    校外:2004-07-19公開
    QR CODE