簡易檢索 / 詳目顯示

研究生: 周家宇
Chou, Yia-Yu
論文名稱: 燒結礦冷卻之三維熱傳分析
The 3-D Heat Transfer Analysis for the Cooling of Sinter Bed
指導教授: 張錦裕
Jiin-Yuh Jang,
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 70
中文關鍵詞: 暫態三維模型燒結礦共軛熱傳
外文關鍵詞: sinter, 3-D numerical model, conjugate heat transfer, transient
相關次數: 點閱:130下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以中鋼燒結冷卻機熱回收系統作ㄧ性能分析,並以數值模擬方式配合實驗探討中鋼公司燒結礦冷卻之熱流場現象。由於燒結礦堆積內部結構複雜且呈不規則分布,故本文以流體流過ㄧ個充滿圓形粒子(particles)的packed beds來模擬燒結礦內部的流場,找出溫度與壓力隨著時間變化的情形,並以共軛熱傳來求解流體對固體(fluid-to-particles)和固體本身(particles)內部的熱傳現象。
    在本文中物理模型可分為兩類,全尺寸模型與4-row模型,其中全尺寸模型為孔隙率Φ=0.38、粒度D=100。而4-row模型主要討論孔隙率分別為0.4與0.5,粒度則為50、70與100mm。另外為了將4-row模型與全尺寸模型作比較,因此在4-row模型中又添加了孔隙率為0.38、粒度為100mm的條件。
    由數值結果發現,全尺寸模型之燒結礦體平均溫度在風速為1.2m/s的時候比入口風速為2m/s時平均熱傳係數 約提高40%。同孔隙率(Φ=0.4)下,粒度由100mm縮小到50mm時,平均熱傳係數 提高約10~20%。而在同粒度(D=70mm)下,孔隙率由0.5縮小到0.4,則平均熱傳係數 提高約30~40%。在孔隙率0.38,粒度100mm的情形下,全尺寸與4-row模型的平均熱傳係數僅僅相差3%。
    將模擬得到的結果作回歸分析,可以得到h=h(D,Φ,Re)之關係式:h=KfD(8.75+0.013Re^0.896)/(ΦD),此式適用在雷諾數Re為1300~11000之間。利用此式之熱傳係數所得到的溫度與實驗作比較,燒結礦的溫度誤差在10%以內,而空氣溫度的誤差則小於30%。

    A 3-D numerical model was performed in the study to simulate the cooling process and enabled the transient analysis of the moving bed. This study also presents the local flow field and the conjugated heat transfer between the fluid and solid in the packed bed. The experimental data was obtained from the iron-ore sinter bed of the China-Steel Company and compared with the numerical results in the study.
    Two kinds of models, full scale and 4-rows model were used and analyzed in the study. For the full scale model, the porosityΦ=0.38 and particle diameter D=100mm were applied and discussed. To simplified the model and reduced the computer time, the 4-rows model was performed and two different porosity (Φ=0.4 and 0.5) and three different particle diameter (D=50mm, 70mm and 100mm) were applied and discussed.
    From the numerical results, the average heat transfer coefficient was about 40% higher when the inlet speed was varied from 1.2m/s to 2m/s. For the same porosity, the average heat transfer coefficient was increased 10%~20% when the particle diameter reduced form 100mm to 50mm. From the same particle diameter, the average heat transfer coefficient was increased 30%~40% when the porosity was reduced from 0.5 to 0.4. The numerical results of the sinter and air temperature agreed with the experimental data within 10%and 30%. The equation for the heat transfer coefficient h is h=KfD(8.75+0.013Re^0.896)/(ΦD)
    Which gives an error form 3.6% to 8.7% over the entire range of Re.

    中文摘要 I 英文摘要 II 誌 謝 II 目錄 IV 表目錄 V 圖目錄 VI 符號說明 VIII 第一章、緒論 1 1-1 前言 1 1-2 文獻回顧 2 第二章、理論分析 8 2-1 基本假設 8 2-2 統御方程式 8 2-3 邊界條件與初始條件 12 2-4 燒結礦塊之物理性質 14 2-5 熱傳係數與雷諾數之計算 15 第三章、數值方法 22 3-1 數值模型 22 3-2 數值方法 23 3-3 解題流程 30 3-4 收斂條件 30 第四章、實驗設備及數據分析 37 4-1 實驗設備 37 4-2 實驗規劃 38 第五章、結果與討論 44 5-1 全尺寸模型之流場、壓力與溫度場分析 44 5-2 4-row模型之流場、壓力分析 45 5-3 流動方向與冷卻時間對熱傳係數之影響 46 5-4 溫度場隨時間之變化 48 第六章、結論 67 參考文獻 68

    1.Nield, D. A. and Kuznestov, A.V., "Local thermal nonequilibrium effects in forced convection in a prous medium channel: a conjugate problem" , International Journal of Heat and Mass Transfer Vol.42, pp. 3245-3252, 1999
    2.Khashan, S.A., Al. Amiri, A. M. and Al-Nimr, M. A., "Assessment of the Local Thermal Non-equilibrium Condition in Developing Forced Convection Flows Through Fluid-Saturated Porous Tubes", Applied Thermal Engineering, Vol.25, pp.1429-1445, 2005
    3.Strangio, V. A.,Dautzenberg, F. M., Calis, H. P. A., & Gupta, A.,"Fixed Catalytic Bed Reactor", International patent application PCT/US99 /06242, priority date March 23, 1998
    4.Winterberg, M.,& Tsotsas, E. "Impact of Tube-to-Particle-Diameter Ratio on", American Institute of Chemical Engineering Journal", Vol.46, No.5, pp.1084, 2000
    5.Calis, H. P. A., Nijenhuis J., Paikert B. C, Dautzenberg F. M., van den Bleek C. M. , "CFD modeling and experimental validation of pressure drop and flow profile in a novel structured catalytic reactor packing", Chemical Engineering Science, Vol.56, pp.1713-1720, 2001
    6.Guardo, A., Coussirat, M., Larrayoz, M. A., Recasens, F. and Egusquiza, E., "Inflence of the Turbulence Model in CFD Modeling of Wall-to-Fluid Heat Transfer in Packed Beds", Chemical Engineering Science, Vol. 60, pp. 1733-1742, 2005
    7.Amudsen, W. R., "Solid Fluid Interactions in Fixed and Moving Beds", Industry Engineering Chemistry, Vol.48, pp.1-50, 1956
    8.McGraw, D. R., "Gas Particle Heat Transfer in a Cross-Flow Moving Packed Bed Heat Exchanger", Powder Technol., Vol.13, Vol.2, pp.231- 239, 1976
    9.Hoerger, C. R. B. and Phillips, W. F., "Limitations of the Single Phase Model for the Solid Gas Heat Transfer in Packed Beds", ASME Journal Heat Transfer, Vol.107, pp.260-262, 1985
    10.Larsen, F.W., "Rapid calculation of Temperature in a Regenerative Heat Exchanger having Arbitrary Initial Solid and Entering Temperature", International Journal Heat Mass Transfer, Vol.10, pp.149-168, 1967
    11.Hamilton, N.I., "Heat and mass flow analysis of packed bed for thermal energy storage", Massachussets Inst. of Technol., Report 02173, pp.104-106, 1978
    12.Beasley, D.E., and Clark, J. A., "Transient response of a packed bed for thermal energy storage", International Journal Heat Mass transient, Vol.27, No.9, pp. 1659-1665, 1984
    13.Caputo, A. C., Cardarelli, G. and Pelagagge, P. M., "Analysis of Heat Recovery in Gas-Solid Moving Beds Using a Simulation Approach", Applied Thermal Engerring, Vol. 16, No.1, pp. 89-99, 1996
    14.Pelagagge, P. M., Caputo, A. C.and Cardarelli, G., "Optimization Criteria of Heat Recovery from Solid Beds", Applied Thermal Engerring, Vol. 17, No.1, pp. 57-64, 1997a
    15.Dixon, A. G. and Cresswell, D. L., "Effective Heat Transfer Parameters for Transient Packed-Bed Models", AIChe Journal, Vol.32, No.5, pp.809-819, 1986
    16.Lai, S., Dudukovic, M. P. and Ramachandran, P. A., "Cells-in-series Method for Simulation of Heat Regenerators in Periodic Operation", Numerical Heat Transfer, Vol.11, pp.125-141, 1987
    17.Khan, J. A. and Beasley, D. E., "Two-dimensional Effects on the Response of Packed Bed Regenerators", ASME Tr. Journal of Heat Transfer, Vol.111, pp.328-336, 1989
    18.Launder, B. E. and Spalding, D. B., "Mathematical Models of Turbulence", Chap. 5, pp. 90-100, Academic, London, 1972
    19.Fiveland, W. A., "Three Dimensional Radiative Heat-Transfer Solutions by the Discrete Ordinates Method", Journal of Thermophysics and Heat Transfer, 2.4(Oct 1988): 309-316, 1988.
    20.Thompson, J. F., Numerical Grid Generation Foundations and Applications, North Holland, New York, 1985
    21. Patankar, S. V., "Numerical Heat Transfer and Fluid Flow", Hemisphere Publishing corpotation, 1984

    下載圖示
    2010-07-07公開
    QR CODE