簡易檢索 / 詳目顯示

研究生: 黃彩蓮
Huang, Tsai-lien
論文名稱: 致癌金屬誘發之訊息傳遞研究
Molecular studies of carcinogenic metals-induced signal transduction
指導教授: 黃浩仁
Huang, Hao-jen
學位類別: 博士
Doctor
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 183
中文關鍵詞: 訊息傳遞活性氧種基因表現鈣依賴性蛋白激酶水稻微陣列絲裂原活化蛋白激酶
外文關鍵詞: As(V), Cr(VI), CDPK, gene expression, MAP kinase, microarray, Pb(II), reactive oxygen species, rice, signaling pathway
相關次數: 點閱:162下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 重金屬及類金屬所造成的環境污染,對人類健康構成重大的威脅。它們會聚積在土壤及水中,透過動物及植物進入食物鏈。植物若吸收被汙染的土壤及水,會使重金屬及類金屬蓄積植物體內而致毒害。以鉛為例,它可抑制植物的生長發育、光合作用,並且影響水分代謝和酶的活性。鉻,則會出現萌芽率的下降、根、莖、葉等器官生長的遲緩、並會使植物的生長受抑制。而砷,對植物具有劇毒、致畸形和突變效應,嚴重影響植物的生長及光合作用。然而,動物若皮膚長期接觸這些重金屬及類金屬之水或食用受汙染之植物,則會產生蓄積的毒害及致癌的影響。因此,這些會致癌的重金屬及類金屬對動物而言,是致癌金屬。透過植物生理學家之長期研究,人們已經大致瞭解致癌金屬所造成的植物病變之現象,然而目前致癌金屬調控植物生理及毒性反應所引發的訊息傳遞及分子機制之研究仍相當少。過去研究發現,植物組織若接觸過量致癌金屬,所引發的訊息傳遞中以絲裂原活化蛋白激酶(MAP Kinase; MAPK)扮演相當重要的角色。因此本研究將探討植物根部在鉛、鉻及砷致癌金屬逆境下訊息傳遞途徑之分子及細胞機轉。首先以西方墨點法及洋菜膠中磷酸激酶(in-gel kinase)分析,結果發現致癌金屬逆境下均會引發40-千道爾頓(40-kDa)及42-千道爾頓(42-kDa) MAPKs的活性。進一步以活性氧化物(ROS)及鈣離子(Ca2+)染劑分析,證實致癌金屬都會誘發水稻根部內ROS及Ca2+聚積。若以抗氧化劑穀胱甘肽(glutathione, GSH)或抗壞血酸鈉(sodium ascorbate)做前處理,結果發現致癌金屬所誘發的MAPKs活性有明顯被抑制的現象。為了確認鉛、鉻及砷所誘發之ROS的來源,我們以尼克安腺嘌呤二核苷酸氧化酶(NADPH oxidase)抑制劑碘化二苯碘 (DPI; diphenylene iodonium)對水稻根部進行前處理,結果發現DPI會抑制鉛、鉻及砷所誘導的MAPKs活性。另外,利用鈣依賴性蛋白激酶(CDPK)拮抗劑W7做前處理,也會對鉛、鉻及砷所誘發的MAPKs活性產生顯著的抑制情況。上述結果顯示,NADPH oxidases及CDPK皆參與鉛、鉻及砷所誘發之MAPK訊息傳遞途徑。
    此外,我們由脱氧核糖核酸微陣列(DNA microarray)分析水稻在砷逆境下與對照組的基因表現量之統計結果顯示有1085個基因是明顯調節上升,而有866個基因是顯著調節下降。其中蛋白質激酶有48個基因、活性氧種有28個基因、轉錄因子有160個基因是明顯的調節上升,而蛋白質激酶家族、活性氧種與轉錄因子家族中又分別以OsCAMK、OsSTE,OsPrx與OsAP2/EREBP、OsWRKY、OsHSF有過度表現。綜合以上結果,我們推測砷由水稻根部吸收後,促使鈣離子流入細胞內。 鈣離子濃度增加後,很可能與CDPK結合,而大幅增加細胞膜上NADPH oxidases,導致ROS產生。之後,至少有OsMPK3, OsMPK6 and 40-kDa MAPK三種MAPKs迅速地被活化,然後調節其下游的轉錄因子,進而引發砷逆境下之反應基因發生。
    因此,本研究對於植物在致癌金屬逆境下訊息傳遞途徑的分子及細胞機轉之探討,期能有效幫助了解植物如何對抗外界環境逆境的機制,以培育出更具耐受力且不吸收致癌金屬的植物。

    Lead (Pb), chromium (Cr) and arsenic (As) are devastating environmental and industrial pollutants with high toxicity to animals and plants. They are recognized as carcinogenic metals, however, the signalling pathways triggered and cellular mechanisms by physiological and cytotoxic actions of these carcinogenic metals remain to be resolved in plants. The aim of this study was to help characterize the molecular mechanisms of signalling networks and cellular mechanism underlying these carcinogenic metals stress in plants.
    Using ROS-sensitive dye and Ca2+ indicator, we demonstrated that Pb(II), Cr(VI) and As(V) induced ROS production and Ca2+ accumulation, respectively. In addition, Pb(II) , Cr(VI) and As(V) elicited a remarkable increase in myelin basic protein (MBP) kinase activities. It was found that the Pb(II)-, Cr(VI)- and As(V)-induced 40- kDa and 42- kDa MBP kinases are also rice mitogen-activated-protein kinases (MAPKs). This study confirmed that the Cr(VI)-induced 42- kDa kinase-active band contain OsMPK6 activity and As(V)-induced 42- kDa kinase-active band contains OsMPK3 and OsMPK6 activity. Pre-treatment with GSH or sodium ascorbate, an antioxidant, and diphenylene iodonium (DPI), a NADPH oxidase inhibitor, attenuated Pb(II)-, Cr(VI)- and As(V)-induced MAPK activation, and Cr(VI) and As(V)-induced NADPH-oxidase-like activities. The data suggests that NADPH oxidases may be involved in Pb(II)-, Cr(VI)- and As(V)-induced MAPK activation in rice roots. Moreover, the calcium-dependent protein kinase (CDPK) antagonist, W7, inhibits Pb(II)-, Cr(VI)- and As(V)-induced MAPK activation. Therefore, we found that the Pb(II)-, Cr(VI)- and As(V)-induced MAPK activation required the involvement of CDPK. Collectively, these results suggest that NADPH oxidase and CDPK may be involved in Pb(II), Cr(VI) and As(V) induction of MAPK activation in rice roots.
    To analyze cellular responses to As(V), we have taken a large-scale analysis of the rice transcriptome during As(V) stress. Using DNA microarray (Agilent 4x44K Rice Oligo Microarray), changes in transcripts accumulation of treated rice roots were monitored after As(V) treatment. Analysis of the array data revealed that 1085 genes were up-regulated and 866 genes were down-regulated in significant response to As(V). A total of 48 protein kinase, 28 ROS and 160 transcription factor (TF) genes were responsive to the As(V) treatment. Among these genes, members from the following two protein kinase families (OsCAMK and OsSTE), one ROS families (OsPrx) and three TF families (OsAP2/EREBP, OsWRKY and OsHSF) were overrepresented. The overall results indicate that increased Ca2+ (likely together with a CDPK) greatly may enhance NADPH oxidases located in cell membrane and lead to ROS production by As(V) stress in rice. MAP kinases (at least OsMPK3, OsMPK6 and 40-kDa MAP kinase) are quickly activated; they transcriptionally regulate many genes involved in transcription factors.
    Taken together these data provide an overview of molecular and cellular changes elicited for future research by Pb(II), Cr(VI) and As(V) exposure.

    中文摘要……………………………………………………………………..……………..I Abstract…………………………………………………………………………………...III Acknowledgements……………………………………………………………………...VII Abbreviations…………………………………………………………………………...VIII Contents……………………………………………………………………………………X CHAPTER 1: General Introduction……………………………………………………...1 1.1 Heavy metal toxicity in plant……………………………………………………...2 1.2 Mitogen-activated protein kinase (MAPK; MAP kinase) signal transduction…4 1.3 Aims of this study………………………………………………………………6 CHAPTER 2: Materials and Methods…………………………………………………...8 2.1 Plant materials and heavy metal treatments…………………… …………........9 2.2 Root length determination……………………………………………………..10 2.3 Analysis of cell death……………………………………………… ………....10 2.4 Inhibitor treatments……………………………………………… …………...11 2.5 Detection of ROS and Ca2+ in rice roots……………………………………....12 2.6. Preparation of protein extracts…………………………………………….….12 2.7 Immunoblot analysis……..………………………………………… ……..….13 2.8 In gel kinase activity assay for MAP kinase and CDPK……………………....14 2.9 Immunoprecipitation……………………………………………… ………….16 2.10 Enzymatic activities assay…………………..………………………………..17 NADPH oxidase activity assay…………………………………………........17 Peroxidase activity assay…………..................................................................18 Catalase activity assay………………………………………………………..20 2.11 Purification of total RNA…………………………………………………….20 2.12 Microarray preparation……………………………………………………….22 2.13 Microarray data analyses and organization………………………………......23 2.14 qRT-PCR……………………………………………………………………...24 2.15 Statistical analyses………………………………………………..… ……….24 CHAPTER 3: ROS and CDPK-like Kinase-mediated Ativation of MAP Kinase in Rice Roots Exposed to Lead……………………………………………26 3.1 Abstract……………………. …………………..……………………………….27 3.2. Introduction………………………………………………………….....……....28 3.3. Results…………………………………………………………………………..30 3.3.1 Effects of Pb(II) on the growth and the viability of rice seedlings……….....30 3.3.2 Pb(II) rapidly induced ROS production in rice roots……………………..….30 3.3.3 Pb(II) treatment activated 40- and 42-kDa MAP kinases in rice roots……...31 3.3.4 GSH and DPI reduced Pb(II)-induced cell death and MAP kinases activities…………………………………………………………………......32 3.3.5 Pb(II) immediately induce Ca2+ accumulation in rice roots………………....33 3.3.6 The calmodulin and CDPK antagonist, W7, reduced Pb(II)-induced on the cell death and MAP kinases activities……………………………..………..33 3.4 Discussion………………………………………………………………………..35 List of figures Fig. 3.1. The effects of Pb(II) on the growth and the viability of rice seedlings….40 Fig. 3.2. Pb(II) induces ROS production and Ca2+ accumulation in rice roots…....41 Fig. 3.3. Dose-responses and time courses of activation of 40- and 42-kDa MBP kinases by Pb(II) in the roots………………………..…………………...42 Fig. 3.4. Effects of an antioxidant, GSH, on (A) cell death and (B) activation of MAP kinase by Pb(II) treatment in rice roots…………………………...43 Fig. 3.5. The effect of a NADPH oxidase inhibitor (DPI), on (A) cell death and (B) MAP kinase activation by Pb(II) treatment in rice roots…….….…...45 Fig. 3.6. Dose–response study of 49-kDa CDPK-like kinase activation by Pb(II) on (A), the effects of calmodulin and CDPK antagonist, W7, (B) Pb(II)-induced root cell death and (C) activation of MAP kinase by Pb(II) treatment……………………………….……….……...46 CHAPTER 4: Distinct Signalling Pathways Responsive to Differential Concentrations of Chromium(VI) in Rice Roots………………….…………………….48 4.1 Abstract……………………. …………………..……………………………….49 4.2 Introduction………………………………………………………….....…….....51 4.3 Results…………………………………………………………………………...54 4.3.1 Effects of Cr(VI) stress on growth of rice seedlings………………………..54 4.3.2 Cr(VI) induced ROS production in rice roots……………………………….54 4.3.3 The 50 μΜ Cr(VI) treatment activated 42-kDa MAPK and 200 μΜ Cr(VI) treatment activated 40- and 42-kDa MAPKs in rice roots………….55 4.3.4 The 200 μΜ Cr(VI)-induced 42-kDa MBP kinase is OsMPK6…………….55 4.3.5 Sodium ascorbate and DPI reduced 200 μΜ, but not 50 μΜ Cr(VI)-induced MAPKs activities…………………………………………………………....56 4.3.6 Cr(VI) induce Ca2+ accumulation and CDPK activation in rice roots……….58 4.3.7 Effect of Arabidopsis mkk2 mutant line on Cr(VI) tolerance……………….58 4.4 Discussion………………………………………………………………………..60 List of figures Fig. 4.1. Effects of Cr(VI) stress on the growth of rice seedlings…………………64 Fig. 4.2. Reactive Oxygen Species (ROS) production and Ca2+ accumulation in rice (Oryza sativa L.) roots during Cr(VI) treatment..………………...65 Fig. 4.3. Dose-responses and time courses of activation of 42-kDa MBP kinase by 50 μM Cr(VI) and activation of 40- and 42-kDa MBP kinases by 200 μM Cr(VI) in rice roots..…………………………………………….66 Fig. 4.4. NADPH oxidase may be involved in the 200 μM Cr(VI)-induced MAPKs.……………………………………………………………..........67 Fig. 4.5. CDPK may be involved in the 200 μM Cr(VI)-induced MAPKs activation…………………………………………………………………68 Fig. 4.6. Effect of Arabidopsis mkk2 mutant line on Cr(VI) tolerance...………….69 Fig. 4.7. Schematic representation of differential Cr(VI) concentration-induced signal transduction in rice………………………………………………...70 CHAPTER 5: Analysis of Signal Transduction and Global Gene Expression during As Stress in Rice Roots…………………………………….……………71 5.1 Abstract……………………. …………………..……………………………….72 5.2 Introduction………………………………………………………….....…….....74 5.3 Results……………………………………………………………………………77 5.5.1 Effects of As(V) stress on root elongation and viability of rice seedlings…..77 5.5.2 As(V) induced MBP kinases, at least, are 40-kDa, OsMPK3, and OsMPK6 in rice roots……………………………………………..…………………...77 5.5.3 As(V) rapidly induced ROS production in rice roots………………….…….79 5.5.4 Redox-dependent activation of MAP kinase by As(V) occurs through ROS-generating systems……………………………………………80 5.5.5 As(V) immediately induce Ca2+ accumulation in rice roots…………………81 5.5.6 The As(V)-induced MAP kinase activation required the involvement of CDPK…………………………………………….……………………....81 5.5.7 Effect of Arabidopsis MAPK mutant lines on As(V) tolerance……………..82 5.5.8 Selection of As(V)-response genes with microarray analysis……………….82 5.5.9 As(V)-responsive transcripts related to signal transduction…………………83 5.5.10 As(V)-responsive transcrtips related to antioxidant……………………..…86 5.5.11 As(V)-responsive transcrtips related to transcription factors…....................87 5.5.12 As(V)-responsive transcrtips related to GA pathway………………………88 5.5.13 Verification of microarray data by qRT-PCR………………………….......89 5.5.14 Antioxidant enzyme activities exhibited decrease under As(V) stress…….90 5.4 Discussion………………………………………………………………………..91 List of figures and tables Fig. 5.1. Influence of As(V) stress on growth and viability of rice seedlings……101 Fig. 5.2. Phosphorylation and immunoprecipitation of As(V)-induced 40- and 42-kDa kinases………………………………………………....102 Fig. 5.3. As(V) induces ROS production and Ca2+ accumulation in rice roots…..104 Fig. 5.4. As(V) induce redox-dependent MAP kinase activation through ROS-generating system in rice roots……..………………........105 Fig. 5.5. CDPK may be involved in the As(V)-induced MAP kinases activation.107 Fig. 5.6. Effect of Arabidopsis MAPK mutant lines on As(V) tolerance………..108 Fig. 5.7. Families of signal transductions, ROS and transcription factors showing alteration in expression in rice roots by As(V) stress………...………109 Fig. 5.8. Time course study of transcript profling of two transcription factors (OsWRKY24 and OsWRKY71), four signal transductions (OsCPK20, OsCPK21, OsMAP3K and OsMPK3), two class III peroxidases (OsPrx75 and OsPrx112) and one catalase (OsCatA) in roots of rice exposed to 25 μM As(V)……………112 Fig. 5.9. Time-dependent study of protein activity of POD (peroxidases) and CAT (catalase) in roots of rice exposed to 25 μM As(V)……..………..113 Fig. 5.10. A model summarizing early signalling events in As(V)-induced rice roots……………………………………………………………….115 Table 1. The forward and reverse primer sequences used in qRT-PCR for detection of protein kinase, transcription factors, peroxidase and catalase genes expression……………………………………….............116 Table 2. Top 30 genes up-regulated by As(V)-induced in rice roots…………….117 Table 3. Top 30 genes down-regulated by 25 μM As(V)-induced in rice roots………………………………………………………………...118 Table 4. Comparison of microarray expression data (significance criteria of P < 0.01 and FDR of 1%) with qRT-PCR data from As(V)-treated rice roots……………………………………………………………….119 Table 5. As(V)-responsive transcripts related to signal transduction, oxidative stress responses, transcription factors, GA2ox, heat shock proteins………………………………………………………….120 REFERENCES………………………………………………………………………….121 CURRICULUM VITAE (自述)…………………………………………………………...149

    Adler V., Yin Z., Tew KD., Ronai Z. Role of redox potential and reaactive oxygen species in stress signaling. Oncogene 18: 6104-6111 (1999).

    Agrawal GK., Rakwal R., Iwahashi H. Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochemical and Biophysical Research Communications 294: 1009–1016 (2002).

    Agrawal GK., Agrawal SK., Shibato J., Iwahashi H., Rakwal R. Novel rice MAP kinases OsMSRMK3 and OsWJUMK1 involved in encountering diverse environmental stresses and developmental regulation. Biochem. Biophys. Res. Commun. 300: 775-783 (2003a).

    Agrawal GK., Iwahashi H., Rakwal R. Small GTPase 'Rop': molecular switch for plant defense responses. FEBS Lett. 546: 173-180 (2003b).

    Asai T., Stone JM., Heard JE., Kovtun Y., Yorgey P. Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways. Plant Cell 12: 1823–1835 (2000).

    Avery SV. Metal toxicity in yeasts and the role of oxidative stress. Adv. Appl. Microbiol. 49: 111–142 (2001).

    Baker CJ., Mock NM. An improved method for monitoring cell death in cell suspension and leaf disc assays using Evans blue. Plant Cell Tiss. Org. Cult. 39: 7–12 (1994).

    Burton KW., Morgan E., Roig A. The influence of heavy metals on the growth of sitka-spruce in South Wales forests. II green house experiments. Plant Soil 78: 271-282 (1984).

    Cakmak I., Horst WJ. Effect of aluminum on lipid peroxidation, superoxide-dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Plant Physiol. 83: 463–468 (1991).

    Cakmak I., Possible role of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 146: 185–205 (2000).

    Cao X., Ma LQ., Tu C. Antioxidant responses to arsenic in the arsenic hyperaccumulator Chinese brake fern (Pteris vittata L.). Environ. Pollut. 128: 317–325 (2004).

    Chowdhury R., Chowdhury S., Roychoudhury P., Mandal C., Chaudhuri K. Arsenic induced apoptosis in malignant melanoma cells is enhanced by menadione through ROS generation, p38 signaling and p53 activation. Apoptosis 14: 108–123 (2009).

    Chuang SM., Liou GY., Yang JL. Activation of JNK, p38 and ERK mitogen-activated protein kinases by chromium(VI) is mediated through oxidative stress but does not affect cytotoxicity. Carcinogenesis 21: 1491–1500 (2000).

    Cordova F.M., Rodrigues AL., Giacomelli MBO., Oliveira CS., Posser T., Dunkley PR., Leal RB. Lead stimulates ERK1/2 and p38MAPK phosphorylation in the hippocampus of immature rats. Brain Res. 998: 65-72 (2004).

    Dardick C., Chen J., Richter T., Ouyang S., Ronald P. The Rice Kinase Database. A Phylogenomic Database for the Rice Kinome. Plant Physiology 143: 579–586 (2007).

    Day RB., Tanabe S., Koshioka M., Mitsui T., Itoh H., Ueguchi-Tanaka M., Matsuoka M., Kaku H., Shibuya N., Minami E. Two rice GRAS family genes responsive to N-acetylchitooligosaccharide elicitor are induced by phytoactive gibberellins: Evidence for cross-talk between elicitor and gibberellin signaling in rice cells. Plant Mol. Biol. 54: 261-272 (2004).

    Decroocg-Ferrant V., Decroocq S., Van WJ., Schmidt E., Kreis M. A homologue of the MAP/ERK family of protein kinase genes is expressed in vegetative and in female reproductive organs of Petunia hybrida. Plant Mol. Biol. 27: 339–350 (1995).

    DeMoor JH., Koropatnick DJ. Metals and cellular signaling in mammalian cells. Cell. Mol. Biol. 46: 367-381 (2000).

    Desveaux D., Marechal A., Brisson N. Whirly transcription factors: Defense gene regulation and beyond. Trends Plant Sci. 10: 95-102 (2005).

    Dube BK., Tewari K., Chatterjee J., Chatterjee C. Excess chromium alters uptake and translocation of certain nutrients in citrullus. Chemosphere 53: 1147-1153 (2003).

    Ernst WHO. Effects of heavy metals in plants at the cellular and organismic levels. In: Schuurmann, G (ed), Ecotoxicology: ecological fundamentals, chemical exposure and biological effects, pp. 587–620. Heidelberg, Wiley (1998).

    Eun SO., Youn HS., Lee Y. Lead disturbs microtubule organization in the root meristem of Zea mays. Physiol. Plant. 110: 357-365 (2000).

    Fleet CM., Sun TP. A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr. Opin. Plant Biol. 8: 77–85 (2005).

    Florea AM., Yamoah EN., Dopp E. Intracellular calcium disturbances induced by arsenic and its methylated derivatives in relation to genomic damage and apoptosis induction. Environmental health perspectives 113: 659-664 (2005).

    Foreman J., Demidchik V., Bothwell JH., Mylona P., Miedema H., Torres MA., Linstead P., Costa S., Brownlee C., Jones J.D., Davies J.M., Dolan L. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422: 442–446 (2003).

    Foy CD. et al., Physiology of metal toxicity in plants. Annu. Rev. Plant Physiol. 29: 511–566 (1978).

    Fu SF., Chow WC., Huang DD., Huang HJ. Transcriptional regulation of a rice mitogen-activated protein kinase gene, OsMAPK4, in response to environmental stresses. Plant Cell Physiol. 43: 958–963 (2002).

    Fuminori T., Yoshihiro N., Kazuko YS., Kazuo S. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant Biol. 9: 436–442 (2006).

    Gaetke LM., Chow CK. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189: 147–163 (2003).

    Gratao PL., Polle A., Lea PJ., Azevedo RA. Making the life of heavy metal-stressed plants a little easier. Funct. Plant Biol. 32: 481–494 (2005).

    Hall JL. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 53: 1-11 (2002).

    Hamel LP., Nicole MC., Sritubtim S., Morency MJ., Ellis M., Ehlting J., Beaudoin N., Barbazuk B., Klessig D., Lee J., Martin G., Mundy J., Ohashi Y., Scheel D., Sheen J., Xing T., Zhang S., Seguin A., Ellis BE. Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci 11: 192-198 (2006).

    Hao FS., Wang X., Chen J. Involvement of plasma-membrane NADPH oxidase in nickel-induced oxidative stress in roots of wheat seedlings. Plant Sci. 170: 151–158 (2006).

    Hepler PK., Vidali L., Cheung AY. Polarized cell growth in higher plants. Annu Rev Cell Dev Biol 17: 159–187 (2001).

    Herrig V., Ferrarese MLL., Suzuki LS., Rodrigues JD., Ferrarese-Filho O. Peroxidase and phenylalanine ammonia-lyase activities, phenolic acid contents, and allelochemicals-inhibited root growth of soybean. Biol. Res. 35: 59–66 (2002).

    Herskowitz I. MAP kinase pathways in yeast: for mating and more. Cell 80: 187–197 (1995).

    Huang HJ., Fu SF., Tai YH., Chou WC., Huang DD. Expression of Oryza sativa MAP kinase gene is developmentally regulated and stress-responsive. Physiol. Plantarum 114: 572–580 (2002).

    Huang TL., Huang HJ. ROS and CDPK-like kinase-mediated activation of MAP kinase in rice roots exposed to lead. Chemosphere 71: 1377–1385 (2008).

    Hunter T., Plowman GD. The protein kinases of budding yeast: six score and more. Trends Biochem. Sci. 22: 18–22 (1997).

    Ichimura K., Tena G., Henry Y., Zhang Z., Hirt H., Wilson C., Morris P., Mundy J., Innes R., Ecker J. Mitogen-activated protein kinse cascade in plants: a new nomenclature. Trends in Plant Science 7: 301-308 (2002).

    Iryo Y., Matsuoka M., Wispriyono B., Sugiura T., Igisu H. Involvement of the extracellular signal-regulated protein kinase (ERK) pathway in the induction of apoptosis by cadmium chloride in CCRF-CEM cells. Biochem. Pharmacol. 60: 1875–1882 (2000).

    Jia G., Sone H., Nishimura N., Satoh M., Tohyama C. Metallothionein (I/II) suppresses genotoxicity caused by dimethylarsinic acid. Int. J. Oncol. 25: 325–333 (2004).

    Jiang M., Zhang J., Involvement of plasma membrane NADPH oxidase in abscisic acid and water stress-induced antioxidant defense in maize leaves. Planta 215: 1022–1030 (2002).

    Jonak C., Ligterink W., Hurt H. MAP kinases in plant signal transduction. Cell Mol Life Sci. 55: 204–213 (1999).

    Jonak C., Okresz L., Bogre L., Hirt H. Complexity, cross talk and integration of plant MAP kinase signaling. Curr. Opin. Plant Biol. 5: 415–424 (2002).

    Jonak C., Nakagami H., Hirt H. Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol. 136: 3276-3283 (2004).

    Karenlampi S., Schat H., Tervahauta AI. Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environ. Poll. 107: 225–231 (2003).

    Kato M., S Shimizu. Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves: phenolic-dependent peroxidative degradation. Can. J. Bot. 65: 729.735 (1987).

    Keller T., Damude HG., Werner D., Doerner P., Dixon RA., Lamb C. A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2t binding motifs. Plant Cell 10: 255–266 (1998).

    Kim DY., Bovet L., Kushnir S., Noh EW., Martinoia E,, Lee Y. AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiol. 140: 922-932 (2006).

    King RW., Evans LT. Gibberellins and flowering of grasses and cereals. Annu. Rev. Plant Biol. 54: 307–328 (2003).

    Kobayashi M., Ohura I., Kawakita K., Yokota N., Fujiwara M., Shimamoto K., Doke N. Yoshioka H. Calciumdependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. The Plant Cell 19: 1065–1080 (2007).

    Kumagai Y., Sumi D. Arsenic: Signal Transduction, Transcription Factor, and Biotransformation Involved in Cellular Response and Toxicity. Annu. Rev. Pharmacol. Toxicol. 47: 243–62 (2007).

    Kyriakis JM., Avruch J. Protein kinase cascades activated by stress and in Xammatory cytokines. Bioessays 18: 567–577 (1996).

    Leal RB., Cordova FM., Herd L., Bobrovskaya L., Dunkley PR. Lead-stimulated p38MAPK-dependent Hsp27 phosphorylation. Toxicol. Appl. Pharmacol. 178: 44-51 (2002).

    Lee TT. On extraction and quantitation of plant peroxidase isoenzymes. Physiol. Plant. 29: 198-203 (1973).

    Lin CW., Chang HB., Huang HJ. Zinc induces mitogenactivated protein kinase activation mediated by reactive oxygen species in rice roots. Plant Physiology and Biochemistry 43: 963–968 (2005).

    Lin YW., Chuang SM., Yang JL. Persistent activation of ERK1/2 by lead acetate increases nucleotide excision repair synthesis and confers anti-cytotoxicity and anti-mutagenicity. Carcinogenesis 24: 53–61 (2003).

    Liszkay A., Kenk B. Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth. Planta 217: 658–667 (2003).

    Lo SF., Yang YA., Chen KT., Hsing YI., Zeevaart JAD., Chen LJ., Yu SM. A Novel Class of Gibberellin 2-Oxidases Control Semidwarfism, Tillering, and Root Development in Rice. The Plant Cell. 20: 2603–2618 (2008).

    Lorenzo O., Chico JM., Sanchez-Serrano JJ., Solano R. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16: 1938-1950 (2004).

    Ludwig AA., Romeis T., Jones JD. CDPK-mediated signaling pathways: specificity and cross-talk. J. Exp. Bot. 55: 181–8 (2004).

    Luo H., Lu Y., Shi X., Mao Y., Delal NS. Chromium (IV)-mediated Fenton-like reaction causes DNA damage: implication to genotoxicity of chromate. Ann. Clin. Lab. Sci. 26: 185-191 (1996).

    Maksymiec W. Signaling responses in plants to heavy metal stress. Acta Physiol Plant 29: 177–187 (2007).

    Mangolin CA., Prioli AJ., Machado MFPS. Isozyme patterns in callus cultures and in plants regenerated from calli of Cereus peruvianus (cactaceae). Biochem. Gen. 32: 237–247 (1994).

    Manning G., Whyte DB., Martinez R., Hunter T., Sudarsanam S. The protein kinase complement of the human genome. Science 298: 1912–1934 (2002)

    McGrath K C., Dombrecht B., Manners JM., Schenk PM., Edgar CI., Maclean DJ., Scheible WR., Udvardi MK., Kazan K. Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139: 949-959 (2005).

    Meharg AA., Hartley-Whitaker J. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytologist 154: 29–43 (2002).

    Meini A., Garcia JB., Pessina G.P., Aldinucci C., Frosini M., Palmi M. Role of intracellular Ca2+ and calmodulin/MAP kinase kinase/extracellular signal-regulated protein kinase signalling pathway in the mitogenic and antimitogenic effect of nitric oxide in glia- and neurone-derived cell lines. Eur. J. Neurosci. 23: 1690-1700 (2006).

    Migdal I., Ilina Y., Tama´s MJ., Wysocki R. Mitogen-activated protein kinase Hog1 mediates adaptation to G1 checkpoint arrest during arsenite and hyperosmotic stress. Eukaryotic cell 1309–1317 (2008).

    Miller G., Mittler R. Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann. Bot. (Lond), 98: 279-288 (2006).

    Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405–410 (2002).

    Mittler R., Vanderauwera S., Gollery M., Van Breusegem F. Reactive oxygen gene network of plants. Trends in Plant Science 9: 490–498 (2004).

    Moller IM., Jensen PE., Hansson A. Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol. 58: 459–481 (2007).

    Nakagami H., Kiegerl S., Hirt H. OMTK1, a novel MAPKKK, channels oxidative stress signaling through direct MAPK interaction. J. Biol. Chem. 279: 26959-26966 (2004).

    Nakagami H., Soukupova H., Schikora A., Zarsky V., Hirt H. A mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. J Biol Chem 281:38697–38704 (2006).

    Namgung U., Xia Z. Arsenic induces apoptosis in rat cerebellar neurons via activation of JNK3 and p38 MAP kinases. Toxicology and Applied Pharmacology 174: 130–138 (2001).

    Nover L., Bharti K., Doring P., Mishra S.K., Ganguli A., Scharf KD. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones, 6: 177-189 (2001).

    Olmos E., Martínez-Solano JR., Piqueras A., Hellín E. Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). J. Exp. Bot. 54: 291-301 (2003).

    Pallavi S., Rama SD. Lead toxicity in plants. Braz. J. Plant Physiol. 17: 35-52 (2005).

    Passardi F., Cosio C., Penel C., Dunand C. Peroxidases have more functions than a Swiss army knife. Plant Cell Report 24: 255–265 (2005).

    Platanias LC. Map kinase signaling pathways and hematologic malignancies. Blood 2003; 101: 4667-4679 (2003).

    Platanias LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol. 5: 375-386 (2005).

    Polle A., Rennenberg H. Significance of antioxidants in plant adaptation to environmental stress. In: Mansfield T, Fowden L, Stoddard F, eds. Plant adaptation to environmental stress. London: Chapman and Hall, 263–273 (1993).

    Polle A., Schützendübel A. Heavy metal signalling in plants: linking cellular and oganismic responses. In H Hirt, K Shinozaki, eds, Plant Responses to Abiotic Stress, Vol 4. Springer-Verlag, Berlin, pp 187–215 (2003).

    Pourrut B., Perchet G., Silvestre J., Cecchi M., Guiresse M., Pinelli E. Potential role of NADPH-oxidase in early steps of lead-induced oxidative burst in Vicia faba roots. J. Plant Physiol. 65: 571–579 (2007).

    Ramamoorthy R., Jiang S-Y., Kumar N., Venkatesh PN., Ramachandran S. A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol. 49: 865–879 (2008).

    Ramesh G.T., Manna S.K., Aggarwal BB., Jadhav AL. Lead activates nuclear transcription factor -kB, activator protein-1, and amino-terminal c-Jun kinase in pheochromocytoma cells. Toxicol. Appl. Pharmacol. 155: 280-286 (1999).

    Ramesh GT., Manna SK., Aggarwal BB., Jadhav AL. Lead exposure activates nuclear factor kappa B, activator protein-1, c-Jun N-terminal kinase and caspases in the rat brain. Toxicol. Lett. 123: 195–207 (2001).

    Rockwell P., Martinez J., Papa L., Gomes E. Redox regulates COX-2 upregulation and cell death in the neuronal response to cadmium. Cell. Signal. 16: 343-353 (2004).

    Sagi M., Fluhr R., Superoxide production by plant homologues of the gp91(phox) NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol. 126: 1281–1290 (2001).

    Sakamoto T., Morinaka Y., Ishiyama K., Kobayashi M., Itoh H., Kayano T, Iwahori S, Matsuoka M., Tanaka H. Genetic manipulation of gibberellin metabolism in transgenic rice. Nat. Biotechnol. 21: 909-913 (2003).

    Sakamoto T., et al. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol. 134: 1642–1653 (2004).

    Sambrook J., Fritsch EF., Maniatis T. Molecular Cloning: A Laboratory Manual, Ed 2. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press (1989).

    Samet JM., Graves LM., Quay J., Dailey LA., Devlin RB., Ghio AJ., Wu W., Bromberg PA., Reed W. Activation of MAPKs in human bronchial epithelial cells exposed to metals. Am. J. Physiol. 275: L551-L558 (1998).

    Sandalio LM., Dalurzo HC., Gomez M., Romero-Puertas MC., del Rio LA., Cadmium induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot. 52: 2115–2126 (2001).

    Sanders D., Pelloux J., Brownlee C., Harper JF. Calcium at the crossroads of signaling. Plant Cell 14(Suppl): S401–S417 (2002).

    Sangwan V., Orvar BL., Beyerly J., Hirt H., Dhindsa RS. Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant J. 31: 629–638 (2002).

    Schützendübel A., Schwanz P., Teichmann T., Gross K., Langenfeld-Heyser HR., Godbold DL., Polle A. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol. 127: 887-898 (2001).

    Schützendübel A., Polle A. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp. Bot. 53: 1351–1365 (2002).

    Seo SR., Chong SA., Lee SI., Sung JY., Ahn YS., Chung KC., Seo JT. Zn2+-induced ERK activation mediated by reactive oxygen species causes cell death in differentiated PC12 cells. J. Neurochem. 78: 600-610 (2001).

    Seregin IV., Ivanov VB. Physiological aspects of cadmium and lead toxic effects on higher plants. Russ. J. Plant Physiol. 48: 523–544 (2001).

    Sharma SS., Dietz K-J., The relationship between metal toxicity and cellular redox imbalance. Cell press (2008).

    Singh N., Ma LQ., Srivastava M., Rathinasabapathi B. Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L and Pteris ensiformis L. Plant Science 170: 274–282 (2006).

    Singh HP., Batish DR., Kohlo RK., Arora K. Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regul. 53: 65–73 (2007).

    Smith AP., DeRidder BP., Guo WJ., Seeley EH., Regnier FE., Goldsbrough PB. Proteomic analysis of Arabidopsis glutathione S-transferases from benoxacor- and copper treated seedlings. J. Biol. Chem. 279: 26098–26104 (2004).

    Snell TW., Brogdon SE., Morgan MB. Gene expression profiling in ecotoxicology. Ecotoxicology 12: 475-483 (2003).

    Song F., Goodman RM. OsBIMK1, a rice MAP kinase gene involved in disease resistance response. Planta 215: 997–1005 (2002).

    Stone JM., Walker JC. Plant protein kinase families and signal transduction. Plant Physiol. 108: 451-457 (1995).

    Sugden KD., Martin BD. Guanine and 7,8-dihydro-8-oxo-guaninespecific oxidation in DNA by chromium[V]. Environ. Health Persp. 110 (Suppl 5): 725–728 (2002).

    Takabatake R., Ando Y., Seo S., Katou S., Tsuda S., Ohashi Y., Mitsuhara I. MAP kinases function downstream of HSP90 and upstream of mitochondria in TMV resistance gene N-mediated hypersensitive cell death. Plant Cell Physiol 48: 498–510 (2007).

    Takahashi A., Kawasaki T., Henmi K., Shi IK., Kodama O., Satoh H., Shimamoto K. Lesion mimic mutants of rice with alterations in early signaling events of defense. Plant J. 17: 535-545 (1999).

    Tanimoto E. Regulation of root growth by plant hormones: Roles for auxin and gibberellin. Crit. Rev. Plant Sci. 24: 249–265 (2005).

    Taylor U., Zerbe H., Seyfert H-M., Rath D., Baulain U., Langner KFA., Schuberth H-J., Porcine spermatozoa inhibit post-breeding cytokine induction in uterine epithelial cells in vivo. Animal Reproduction Science. In press (2009).

    Teige M., Scheikl E., Eulgem T., Dóczi R., Ichimura K., Shinozaki K., Dangl J., Hirt H., The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15: 141–152 (2004).

    Tena G., Asai T., Chiu W.L., Sheen J. Plant mitogen-activated protein kinase signaling cascades. Curr. Opin. Plant Biol. 4: 392–400 (2001).

    Thomas SG., Phillips AL., Hedden P. Molecular cloning and functional expression of gibberellin 2- oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc. Natl. Acad. Sci. USA 96: 4698-4703 (1999).

    Thurow C., Schiermeyer A., Krawczyk S., Butterbrodt T., Nickolov K., Gatz C. Tobacco bZIP transcription factor TGA2.2 and related factor TGA2.1 have distinct roles in plant defense responses and plant development. Plant J. 44: 100-113 (2005).

    Timothy P., Wakeman DW., Bo X. Involvement of the p38 MAP kinase in Cr(VI)-induced growth arrest and apoptosis. Mol. Cell. Biochem. 279: 69–73 (2005).

    Tripathi BN., Gaur JP. Relationship between copper- and zinc-induced oxidative stress and proline accumulation in Scenedesmus sp. Planta 219: 397-404 (2004).

    Tsai TM., Huang HJ. Effects of iron excess on cell viability and mitogen-activated protein kinase activation in rice roots. Physiologia Plantarum 127: 583–592 (2006).

    Ülker B., Somssich IE. WRKY transcription factors: from DNA binding towards biological function. Current Opinion in Plant Biology. 7: 491-498 (2004).

    Ullrich-Eberius C., Sanz A., Novacky A. Evaluation of arsenate and vanadate-associated changes of electrical membrane potential and phosphate transport in Lemna gibba-G1. J. Exp. Bot. 40: 119-128 (1989).

    Urao T., Katagiri T., Mizoguchi T., Yamaguchi-Shinozaki SK., Hayashida N., Shinozaki K., Two genes that encode Ca2+-dependent protein kinase are induced by drought and high-salt stresses in Arabidopsis thaliana. Mol. Gen. Genet. 244: 331-340 (1994).

    Verma S., Dubery R.S. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci. 164: 645-655 (2003).

    Wan B., Lin Y., Mou T. Expression of rice Ca2+-dependent protein kinases (CDPKs) genes under different environmental stresses. FEBS Lett. 581: 1179-1189 (2007).

    Wang X., Martindale JL., Liu Y., Holbrook NJ. The cellular response to oxidative stress: influences of mitogenactivated protein kinase signaling pathways on cell survival. Biochem. J. 333: 291–300 (1998).

    Wang Y., Li J. The plant architecture of rice (Oryza sativa). Plant Mol. Biol. 59: 75–84 (2005).

    Wen JQ., Oono K., Imai R. Two novel mitogen-activated protein signaling components, OsMEK1 and OsMAP1, are involved in a moderate low-temperature signaling pathway in rice. Plant Physiology 129: 1880–1891 (2002).

    Werlen G., Hausmann B., Naeher D., Palmer E. Signaling life and death in the thymus: timing is everything. Science 299: 1859–1863 (2003).

    Widmann C., Gibson S., Jarpe MB., Johnson GL. Mitogenactivated protein kinase: conservation of a three-kinase module from yeast to human. Physiol. Rev. 79: 143–180 (1999).

    Wilson MA., Burt AR., Milligan G., Anderson NG. Mitogenic signalling by d opioid receptors expressed in rat-1 fibroblasts involves activation of the p70s6k/p85s6k, S6 kinase. Biochem. J. 325: 217–222 (1997).

    Wong HL., Sakamoto T., Kawasaki T. Umemura K., Shimamoto K. Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiology 135: 1–10 (2004).

    Woodbury W., Spencer AK., Stahman MA. An improved procedure using ferricyanide for detecting catalase isozymes. Anal. Biochem. 44: 301–305 (1971).

    Xiong L., Yang Y. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. The Plant Cell 15: 745–759 (2003).

    Yamanouchi U., Yano M., Lin H., Ashikari M., Yamada K. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc. Natl. Acad. Sci. USA, 99: 7530-7535 (2002).

    Yang YY., Jung JY., Song WY., Suh HS., Lee Y. Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism of tolerance. Plant Physiol. 124: 1019-1026 (2000).

    Yeh CM., Hung WC., Huang HJ. Copper treatment activates mitogen-activated protein kinase signaling in rice. Physiol. Plant. 119: 392–399 (2003).

    Yeh CM., Hsiao LJ., Huang HJ. Cadmium activates a mitogen-activated protein kinase gene and MBP kinases in rice. Plant Cell Physiol. 45: 1306–1312 (2004).

    Yeh CM., Chien PS., Huang HJ. Distinct signaling pathways for induction of MAP kinase activities by cadmium and copper in rice roots. J. Exp. Bot. 58: 659-671 (2007).

    Yoshioka H., Numata N., Nakajima K., Katou S., Kawakita K., Rowland O., Jones J.D., Doke N. Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15: 706–718 (2003).

    Yuasa T., Ichimura K., Mizoguchi T., Shinozaki K. Oxidative stress activates AtMPK6, an Arabidopsis homologue of MAP kinase. Plant Cell Physiol. 42: 1012–1016 (2001).

    Zhang S., Klessing DF. Salicylic acid activates a 48-kD MAP kinase in Tobacco. Plant Cell 9: 809–824 (1997).

    Zhang S., Klessig D.F. MAPK cascades in plant defense signaling. Trends Plant Sci. 6: 520–527 (2001).

    Zhang S., Liu Y. Activation of salicylic acid-induced protein kinase, a mitogen-activated protein kinase, induces multiple defense responses in tobacco. Plant Cell 13:1877–1889 (2001).

    下載圖示 校內:2015-08-05公開
    校外:2015-08-05公開
    QR CODE