簡易檢索 / 詳目顯示

研究生: 許耿豪
Hsu, Keng-Hao
論文名稱: 聚左乳酸薄膜內之板晶成長習性探討
New aspects of crystal growth habits within PLLA thin film
指導教授: 阮至正
Ruan, Jr-Jeng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 97
中文關鍵詞: 聚左乳酸層晶成長薄膜層晶增厚
外文關鍵詞: PLLA, lamellar growth, domain coalescence, lamellar thickening
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了觀察高分子中單純的層晶成長過程,此研究準備了十五奈米以
    下的聚左乳酸薄膜。不同分子量與不同結晶溫度都會在此研究中被探討。
    高分子在結晶初期會先出現粒狀的聚集,這些粒狀的聚集如果可以進一
    步互相聚集,則正立層晶可以在其中發展,若這些粒狀的聚集無法有效
    率的合併,側立層晶則會先發展。如何有效的讓這些粒狀區間擴散就取
    決於持溫溫度,溫度越高,高分子鏈段越容易移動,粒狀區間也就越容
    易向彼此聚集,因此在聚左乳酸薄膜中低溫比較傾向形成側立層晶而高
    溫比較傾向形成正立層晶。
    當層晶開始增厚,包覆結晶區域的非晶質區域會開始參與結晶並消
    失,又因為非晶質區域和結晶區域的體積和密度差異,從形貌來看這些
    層晶會開始變窄變細。在低溫的層晶增厚中,因為溫度不足以讓分子鏈
    自由的移動,非晶質區域無法有效率的參與結晶,其形貌將不會有劇烈
    的改變。
    不同分子量的聚左乳酸對結晶的影響在於當分子量越高,分子鏈段
    越不容易解除互相纏繞的狀態,分子鏈也就不容易移動聚集,於相同的
    溫度下跟低分子量的高分子比起來比較容易產生側立層晶,在層晶增厚
    的時候也需要比較多時間與比較高的溫度。

    Both temperature and molecular-weight effects on lamellar growth of
    polylactide acids (PLA) with thin film of 15 nm thick have been
    systematically studied in this research. The presence of granular domains and
    further coalescence behavior were found and comprehensively explored as a
    critical factor for determining lamellar growth orientation to be flat-on or
    edge-on. If the coalescence of granular domains can efficiently progress, the
    growth of flat-on lamellae is favored, because sufficient space is available for
    crystalline lamellae to extensively grow in the orientation parallel to substrate
    surface. Based on obtained results, this research has proposed that, with
    sufficient undercooling, the adopted crystallization habit within thin film is to
    quickly lower the free energy by optimally increasing the volume fraction of
    crystalline domain.
    At the late growth stage of flat-on lamellae, the domain impingement
    causes the further crystallization of remaining amorphous fraction to progress
    through the lamellar thickening process. This route of further crystallization
    thus reduces the covered area by crystalline domains. For the reorganization
    of edge-on lamellae originally growing at a lower temperature, the occurrence
    of lamellar coalescence within vein-like domains has been proposed for
    explaining the gradual decrease of the areas covered by lamellar stacking.

    摘要…………………………………………………………………………i Abstract……………………………………………………………………iii 致謝…………………………………………………………………………iv Contents……………………………………………………………………v List of Figures…………………………………………………………vii Chapter I Introduction…………………………………………………1 Chapter II Literature study……………………………………………6 II.1 Lamellar growth orientation………………………………7 II.2 Growth morphology of flat-on and edge-on lamellae…14 II.3 Lamellar thickening and coalescence within thin film….26 Chapter III Experimental……………………………………………40 III.1 Materials…………………………………………………40 III.2 Instrument………………………………………………41 III.3 Procedures………………………………………………44 III.3.1 Sample preparation…………………………………44 III.3.1 Film thickness………………………………………44 III.3.2 Isothermal evolution of flat-on lamellae……………44 III.3.3 Evolution of edge-on lamellae at higher temperature..45 III.3.5 TEM analyze…………………………………………45 vi III.3.6 AFM analyze…………………………………………45 Chapter IV Results and Discussion…………………………………46 IV.1.1 Growth of edge-on lamellae……………………………48 IV.1.2 Growth of flat-on lamellae……………………………55 IV.2.1 Reorganization of flat-on lamellae……………………68 IV.2.2 Reorganization of edge-on lamellae…………………78 IV.2.3 Temperature effect on the reorganization of edge-on lamellae………………………………………………87 Chapter V Conclusion…………………………………………………93 References…………………………………………………………………95

    [1] Wunderlich, B. Macromolecular Physics Vol.1, New York, Academic
    press 1976, 183-217.
    [2] Xu, J. J.; Ma, Y.; Hu, W. B.; Rehahn, M.; Reiter, G. Nat. Mater. 2009, 8,
    348-353.
    [3] Chan, C. M.; Li, L. Adv. Polym. Sci. 2005, 188, 1-41.
    [4] Wang, Y.; Ge, S.; Rafailovich, M.; Sokolov, J.; Zou, Y.; Ade, H.;
    Luening, J.; Lustiger, A.; Maron, G. Macromolecules 2004, 37, 3319-3327.
    [5] Scho1nherr, H.; Frank, C. W. Macromolecules 2003, 36, 1188-1198.
    [6] Kikkawa, Y.; Abe, H.; Fujita, M.; Iwata, T.; Inoue, Y.; Doi, Y.
    Macromol. Chem. Phys. 2003, 204, 1822-1831.
    [7] Wang, Y.; Chan, C. M.; Ng, K. M.; Lin, L. Macromolecules 2008, 41,
    2548-2553.
    [8] DeMaggio, G. B.; Frieze, W. E.; Gidley, D. W.; Zhu, M.; Hristov, H. A.;
    Yee, A. F. Phys. Rev. Lett. 1997, 78, 1524-1527.
    [9] Keddie, J. L.; Jones, R. A. L.; Cory, R. A. Faraday Discuss. 1994, 98,
    219-230.
    [10] Van Zanten, J. H.; Wallace, W. E.; Wu, W. Phys. Rev. E 1996, 53,
    R2053-R2056.
    [11] Grohens, Y.; Brogly, M.; Labbe, C.; David, M. O.; Schultz, Langmuir
    1998, 14, 2929-2932.
    [12] Reiter, G. Europhys. Lett. 1993, 23, 579-584.
    [13] Seki, T.; Fukuda, K.; Ichimura, K. Langmuir 1999, 15, 5098-5101.
    [14] Kim, J. H.; Jang, J.; Zin, W. C. Langmuir 2000, 16, 4064-4067.
    [15] Kim, J. H.; Jang, J.; Zin, W. C. Langmuir 2001, 17, 2703-2710.
    [16] Keddie, J. L.; Jones, R. A. L.; Cory, R. A. Europhys. Lett. 1994,
    27,59-64.
    [17] Forrest, J. A.; Dalnoki-Veress, K.; Stevens, J. R.; Dutcher, J. R. Phys.
    Rev. Lett. 1996, 77, 2002-2005.
    [18] Forrest, J. A.; Dalnoki-Veress, K.; Dutcher, J. R. Phys. Rev. E 1997, 56,
    5705-5716.
    [19] Meyers, G. F.; DeKoven, B. M.; Seitz, J. T. Langmuir 1992, 8,
    2330-233.
    [20] Jean, Y. C.; Cao, Z. H.; Yuan, J. P.; Huang, C. M.; Nielsen, B.;
    Asoka-Kumar, P. Phys. Rev. B 1997, 56, R8459-R8462.
    [21] Keith, H. D.; Padden, F. J. Jr. J. Appl. Phys. 1963, 34, 2409-2421.
    [22] Keith, H. D.; Padden, F. J. Jr. J. Appl. Phys. 1964, 35, 1270-1286.
    [23] Wunderlich, B. Macromolecular Physics Vol.2, New York, Academic
    press, 1976, 299-301.
    [24] Zhang, F.; Liu, J.; Huang, H.; Du, B.; He, T. Eur. Phys. J. E. 2002, 8,
    289-297.
    [25] Zhai, X.; Wang, W.; Zhang, G.; He, B. Macromolecules 2006, 39,
    324-329.
    [26] Mareau, V. H.; Prud’homme, R. E. Macromolecules 2005, 38, 398-408.
    [27] Mareau, V. H.; Prud’homme, R. E. Polymer 2005, 46, 7255-7265.
    [28] Reiter, G.; Botiz, I.; Graveleau, L.; Grozev, N.; Albrecht, K.; Mourran,
    A. et al. Progress in understanding of polymer crystallization, New York,
    Springer-Verlag, 2007, 179-200.
    [29] Ferreiro, V.; Douglas, J. F.; Warren, J. A.; Karim, A. Phys. Rev. E 2002,
    65, 042802.
    [30] Ferreiro, V.; Douglas, J. F.; Warren, J. A.; Karim, A. Phys. Rev. E 2002,
    65, 051606.
    [31] Okerberg, B. C.; Marand, H.; Douglas, J. F. Polymer 2008, 49, 579-587
    [32] Taguchi, K.; Miyaji, H.; Izumi, K.; Hoshino, A.; Miyamoto,Y.; Kokawa,
    R. Polymer 2001, 42, 7443-7447.
    [33] Maillard, D.; Prud’homme R. E. Macromolecules 2006, 39, 4272-4275.
    [34] Maillard, D.; Prud’homme R. E. Macromolecules 2008, 41, 1705-1712.
    [35] Maillard, D.; Prud’homme R. E. Can. J. Chem. 2008, 86, 556-563
    [36] Norton, B. R.; Keller, A. Polymer 1985, 26, 704-718.
    [37] Fujita, M.; Iwata, T.; Doi, Y. Polym. Degrad. Stab. 2003, 81, 131-139.
    [38] Mitomo, H.; Doi, Y. Int J Biol Macromol. 1999, 25, 201-205.
    [39] Fujita, M.; Doi, Y. Biomacromolecules 2003, 4, 1301-1307.
    [40] Winkel, A. K.; Hobbs, J. K.; Miles, M. J. Polymer 2000, 41,
    8791-8800.
    [41] Sommer, J. U.; Reiter, G. Adv. Polym. Sci. 2006, 200, 1-36.
    [42] Sommer, J. U.; Reiter, G. Thermochim. Acta. 2005, 432, 135-147.
    [43] Rastogi, S.; Spoelstra, A. B.; Goossens, J. G. P.; Lemstra, P. J.
    Macromolecules 1997, 30, 7880-7889.
    [44] Matsuda, H.; Aoike, T.; Uehara, H.; Yamanobe, T.; Komoto, T. Polymer
    2001, 42, 5013-5021.
    [45] Durand, O. Thin Solid Films 2004, 450, 51-59.

    無法下載圖示 校內:2017-08-16公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE