| 研究生: |
古昂可 Ku, Ang-Ke |
|---|---|
| 論文名稱: |
聲音對視覺整體運動方向辨別之影響:等雜訊實驗派典 The Influence of Sound on Visual Global Motion Direction Discrimination: An Equivalent Noise Approach |
| 指導教授: |
黃碧群
Huang, Pi-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
社會科學院 - 心理學系 Department of Psychology |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 多感官知覺 、視聽整合 、等雜訊實驗派典 、整體運動方向判斷 、心理物理學 |
| 外文關鍵詞: | multisensory, audiovisual interactions, equivalent noise paradigm, global motion integration, psychophysics |
| 相關次數: | 點閱:160 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以往的研究利用不同的派典、操弄探討聲音刺激對於視覺運動方向偵測或辨別能力上的影響,其效果與成因各有差異。本研究採用等雜訊實驗派典 (equivalent noise (E.N.) paradigm) 探討聲音 (無聲、無方向性、與視覺刺激同向及與視覺刺激異向) 是否會改變視覺整體運動方向的辨別能力,並利用等雜訊模型 (E.N. model) 分析聲音影響了整合歷程中的哪一個階段:對於偵測局部運動訊號移動方向的不確定性 (內在雜訊,internal noise) 、改變使用多少局部運動訊號進行整合的能力 (抽樣效率,sampling efficiency) ,或是兩者皆有。筆者所採用的視覺刺激為一百個移動方向來自於同一常態分配的點,其平均數為移動方向,其標準差被視為外在雜訊 (external noise) ,測量受試者在不同的外在雜訊下,視覺刺激的平均移動方向需偏移九十度(垂直向上移動)幾度,受試者才能成功辨別整體的移動方向。實驗一,利用強迫選擇法 (two-alternative forced choise) ,受試者判斷視覺刺激的平均運動方向為左或右。其結果為隨著外在雜訊越高,對於運動方向辨別的閾值越高。不同聲音刺激下也沒有差異。在視覺方向判斷作業中,受試者會受聲音刺激造成反應誤差 (response bias) ,內在雜訊與抽樣效率不會受到影響。 實驗二,利用兩區間強迫選擇法 (two-interval forced choise) ,目標區間的平均移動方向為向右或向左,另一區間的平均移動方向為正上方,受試者選擇目標區間。其結果與實驗一相同,隨著外在雜訊越高,受試者的閾值越高,不同的聲音並沒有差異。內在雜訊與抽樣效率並不會受到聲音刺激的影響。實驗三,與實驗二相同皆利用兩區間強迫選擇法。與實驗二不同的在於目標區間的平均移動方向為向左。其結果與實驗一、二結果皆相同,都為隨著外在雜訊越高,受試者的閾值越高,在不同的聲音之下閾值並沒有差異。綜合本研究的三項實驗,在不同的作業之下結果皆維持一致,外在雜訊的多寡為影響受試者反應的主要因素,聲音刺激不會影響受試者的內在雜訊與抽樣效率。
The past studies in audiovisual motion interactions have shown different results. The aim of this study is to investigate how sound influences on visual global motion discrimination so as to define the role of auditory stimuli in visual motion integration processing. In this study, we applied equivalent noise (E.N.) paradigm and E.N. model to analyze how auditory stimuli influence the visual motion integration processing across two parameters: internal noise (precision in detecting local motion direction) and sampling efficiency (ability to pool the local motion across space). The visual stimuli consisted of 100 dots that moved in directions assigned from a normal distribution. We examined how many degrees of movement direction deviated from vertical-upward that observers could discriminate successfully under four sound conditions (absent, stationary, incongruent, and congruent sound), and examined the performance at different standard deviations (SDs, as the external noise in the paradigm). Two-alternative forced choice method were used in Experiment 1: observers responded to the mean direction of moving dots. The results showed that thresholds increased with increasing SD, but the rate of increase did not significantly differ between the conditions. That is, neither internal noise nor sampling efficiency was changed under different sound conditions. We used two-intervals forced choice method in Experiment 2 and 3 to investigate whether this phenomenon was stable in different task. In Experiment 2, the observers responded to the interval which consisted the mean direction that was right-upward or left-upward instead of vertical-upward. In Experiment 3, the observers also responded the target interval which the mean direction was left- upward. The results of these experiments also showed that thresholds increased with SD, but the rate of increase did not significantly differ between the conditions. It suggests that the sound does not change the local motion direction detectability or pooling ability.
Alais, D., & Burr, D. (2004). No direction-specific bimodal facilitation for audiovisual motion detection. Cognitive Brain Research, 19(2), 185–194. doi: 10.1016/j.cogbrainres.2003.11.011
Barlow, H. B. (1956). Retinal noise and absolute threshold. JOSA, 46(8), 634–639. doi: 10.1364/JOSA.46.000634
Barlow, H. B. (1978). The efficiency of detecting changes of density in random dot patterns. Vision Research, 18(6), 637–650. doi: 10.1016/0042-6989(78)90143-8
Baumann, O., & Greenlee, M. W. (2007). Neural correlates of coherent audiovisual motion perception. Cerebral Cortex, 17(6), 1433-1443. doi: 10.1093/cercor/bhl055
Bevington, P., & Robinson, D. (2003). Data reduction and error analysis for the physical sciences. McGraw-Hill.
Bogfjellmo, L.-G., Bex, P. J., & Falkenberg, H. K. (2014). The development of global motion discrimination in school aged children. Journal of vision, 14(2), 19–19. doi: 10.1167/14.2.19
Brainard, D. H. (1997). The psychophysics toolbox. Spatial vision, 10, 433–436.
Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (1992). The analysis of visual motion: a comparison of neuronal and psychophysical performance. Journal of Neuroscience, 12(12), 4745–4765.
Dakin, S. C., Mareschal, I., & Bex, P. J. (2005a). Local and global limitations on direction integration assessed using equivalent noise analysis. Vision research, 45(24), 3027–3049. doi: 10.1016/j.visres.2005.07.037
Dakin, S. C., Mareschal, I., & Bex, P. J. (2005b). An oblique effect for local motion: Psy- chophysics and natural movie statistics. Journal of Vision, 5(10), 9–9. doi: 10.1167/5.10.9
Falkenberg, H. K., Simpson, W. A., & Dutton, G. N. (2014). Development of sampling efficiency and internal noise in motion detection and discrimination in school-aged chil- dren. Vision research, 100, 8–17. doi: 10.1016/j.visres.2014.04.001
Gleiss, S., & Kayser, C. (2014). Oscillatory mechanisms underlying the enhancement of visual motion perception by multisensory congruency. Neuropsychologia, 53, 84–93. doi: 10.1016/j.neuropsychologia.2013.11.005
Hidaka, S., Teramoto, W., Sugita, Y., Manaka, Y., Sakamoto, S., & Suzuki, Y. (2011). Audi- tory motion information drives visual motion perception. PLoS One, 6(3), e17499. doi: 10.1371/journal.pone.0017499
Howard, I. P., & Templeton, W. B. (1966). Human spatial orientation. , 541.
Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of physiology, 160(1), 106–154. doi: 10.1113/jphysiol.1962.sp006837
Joshi, M. R., Simmers, A. J., & Jeon, S. T. (2016). Concurrent investigation of global motion and form processing in amblyopia: An equivalent noise approach. Investigative Ophthal- mology & Visual Science, 57(11), 5015–5022. doi: 10.1167/iovs.15-18609
Kersten, D. (1984). Spatial summation in visual noise. Vision research, 24(12), 1977–1990. doi: 10.1016/0042-6989(84)90033-6
Kim, R., Peters, M. A., & Shams, L. (2012). 0+ 1> 1 how adding noninformative sound improves performance on a visual task. Psychological science, 23(1), 6–12. doi: 10.1177/0956797611420662
Kim, R., Seitz, A. R., & Shams, L. (2008). Benefits of stimulus congruency for multisensory facilitation of visual learning. PLoS One, 3(1), e1532. doi: 10.1371/journal.pone.0001532
Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., Broussard, C., et al. (2007). "what’s new in psychtoolbox-3?". Perception, 36(14), 1.
Kobayashi, M., Teramoto, W., Hidaka, S., & Sugita, Y. (2012). Sound frequency and aural selectivity in sound-contingent visual motion aftereffect. PloS one, 7(5), e36803. doi: 10.1371/journal.pone.0036803
Legge, G. E., Kersten, D., & Burgess, A. E. (1987). Contrast discrimination in noise. JOSA A, 4(2), 391–404. doi: 10.1364/JOSAA.4.000391
Lund, J. S. (1988). Anatomical organization of macaque monkey striate visual cortex. Annual review of neuroscience, 11(1), 253–288.
Manning, C., Dakin, S. C., Tibber, M. S., & Pellicano, E. (2014). Averaging, not internal noise, limits the development of coherent motion processing. Developmental cognitive neuroscience, 10, 44–56. doi: 10.1016/j.dcn.2014.07.004
Manning, C., Tibber, M. S., Charman, T., Dakin, S. C., & Pellicano, E. (2015). Enhanced integration of motion information in children with autism. The Journal of Neuroscience, 35(18), 6979–6986. doi: 10.1523/JNEUROSCI.4645-14.2015
Mansouri, B., & Hess, R. F. (2006). The global processing deficit in amblyopia involves noise segregation. Vision research, 46(24), 4104–4117. doi: 10.1016/j.visres.2006.07.017
McCool, C., & Britten, K. (2008). Cortical processing of visual motion. In T. Albright & R. Masland (Eds.), The senses: A comprehensive reference (pp. 157–187). Oxford, UK: Elsevier.
McGurk, H., & MacDonald, J. (1976). Hearing lips and seeing voices. Nature, 264(5588), 746–748.
Meredith, M. A., & Stein, B. E. (1985). Descending efferents from the superior colliculus relay integrated multisensory information. Science, 227, 657–660.
Meyer, G., & Wuerger, S. (2001). Cross-modal integration of auditory and visual motion signals. Neuroreport, 12(11), 2557–2560.
Molholm, S., Ritter, W., Javitt, D. C., & Foxe, J. J. (2004). Multisensory visual–auditory object recognition in humans: a high-density electrical mapping study. Cerebral Cortex, 14(4), 452–465. doi: 10.1093/cercor/bhh007
Morein-Zamir, S., Soto-Faraco, S., & Kingstone, A. (2003). Auditory capture of vi- sion: examining temporal ventriloquism. Cognitive Brain Research, 17(1), 154–163. doi: 10.1016/S0926-6410(03)00089-2
Movshon, J. A., & Newsome, W. T. (1996). Visual response properties of striate cortical neurons projecting to area mt in macaque monkeys. Journal of Neuroscience, 16(23), 7733– 7741.
Newsome, W. T., Britten, K. H., & Movshon, J. A. (1989). Neuronal correlates of a percep- tual decision. Nature.
Newsome, W. T., & Pare, E. B. (1988). A selective impairment of motion perception fol- lowing lesions of the middle temporal visual area (mt). Journal of Neuroscience, 8(6), 2201–2211.
Pardhan, S., Gilchrist, J., Elliott, D., & Beh, G. (1996). A comparison of sampling efficiency and internal noise level in young and old subjects. Vision Research, 36(11), 1641–1648. doi: 10.1016/0042-6989(95)00214-6
Pelli, D. G. (1990). The quantum efficiency of vision. In C. Blakemore (Ed.), Vision: Coding and efficiency (p. 3-24). Cambridge University Press.
Pelli, D. G. (1997). The videotoolbox software for visual psychophysics: Transforming numbers into movies. Spatial vision, 10(4), 437–442.
Prins, N., & Kingdom, F. A. A. (2009). Palamedes: Matlab routines for analyzing psy- chophysical data. http://www.palamedestoolbox.org.
Shams, L., Kamitani, Y., & Shimojo, S. (2000). Illusions: What you see is what you hear. Nature, 408(6814), 788.
Simpson, W. A., Falkenberg, H. K., & Manahilov, V. (2003). Sampling efficiency and internal noise for motion detection, discrimination, and summation. Vision Research, 43(20), 2125-2132.
Soto-Faraco, S., Spence, C., & Kingstone, A. (2004). Cross-modal dynamic capture: congruency effects in the perception of motion across sensory modalities. Journal of Experimental Psychology: Human Perception and Performance, 30(2), 330. doi: 10.1037/0096- 1523.30.2.330
Teramoto, W., Hidaka, S., & Sugita, Y. (2010). Sounds move a static visual object. PLoS One, 5(8), e12255. doi: 10.1371/journal.pone.0012255
Tibber, M. S., Anderson, E. J., Bobin, T., Carlin, P., Shergill, S. S., & Dakin, S. C. (2015). Local and global limits on visual processing in schizophrenia. PloS one, 10(2), e0117951. doi: 10.1371/journal.pone.0123801
Vroomen, J., & Gelder, B. d. (2000). Sound enhances visual perception: cross-modal effects of auditory organization on vision. Journal of experimental psychology: Human perception and performance, 26(5), 1583. doi: 10.1037/0096-1523.26.5.1583
Watanabe, K., & Shimojo, S. (2001). When sound affects vision: effects of auditory group- ing on visual motion perception. Psychological Science, 12(2), 109–116. doi: 10.1111/1467- 9280.00319
Wuerger, S., Hofbauer, M., & Meyer, G. (2003). The integration of auditory and visual motion signals at threshold. Attention, Perception, & Psychophysics, 65(8), 1188–1196. doi: 10.3758/BF03194844