| 研究生: |
王中和 Wang, Chung-Ho |
|---|---|
| 論文名稱: |
含非線性光學功能基熱穩定聚胺酯之合成與性質 Synthesis and Properties of Thermally Stable Nonlinear Optical Polyurethanes |
| 指導教授: |
郭人鳳
Kuo, Jen-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 熱穩定性 、聚胺基甲酸酯 、非線性光學 |
| 外文關鍵詞: | Nonlinear optical, Polyurethanes, Disperse red 19, Thermal stability |
| 相關次數: | 點閱:79 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究成功地合成出三種含有高非線性光學性質發色團4-N,N-bis(2- hydroxyethylene)amino-4’-nitro azobenzene (Disperse Red 19, DR-19)的側鏈型聚胺基甲酸酯(DR-PUn’s)並探討性質,高分子中的二異氰酸酯結構分別為4,4’-methylenebis(phenyl isocyanate)、tolylene-2,4-diisocyanate以及3,3’-dimethoxy-4,4’- biphenylene diisocyanate。另一方面,則以三官能基發色團單體(TDR-19)的合成為目標來進行架橋交聯。
DR-PUn’s可溶於極性非質子溶劑如THF、DMF及環己酮等,藉由旋轉塗佈可得到高光學品質薄膜,然後以電暈極化的方法將薄膜極化。DR-PUn’s玻璃轉移溫度(Tg)的高低由微差掃描熱卡儀(DSC)量測之結果為DR-PU2 > DR-PU1 > DR-PU3依序分別為142.3℃、138.5℃以及136.7℃,其DSC曲線中均沒有熔點而為不定形之狀態。由極化前後吸收光譜的測量可得到DR-PU1、DR-PU2及DR-PU3的序列參數值分別為0.210、0.262以及0.178,三個DR-PUn’s非線性光學性質的長時間熱穩定性會隨著聚胺基甲酸酯的Tg而增加,極化後的DR-PUn薄膜於90℃下非線性光學性質的時間熱穩定性均很優良。為了進一步研究熱交鏈系統所以合成TDR-19,本研究在TDR-19部份的合成經驗與性質探討等可作為相關研究之延續和參考。
In this study, three types of polyurethanes with a highly NLO active chromophore, 4-N,N-bis(2-hydroxy ethylene)amino-4’-nitroazobenzene (Disperse Red 19, DR-19), in the polymer side chain were successfully synthesized (DR-PUn’s) and characterized. The diisocyanate components of the polymers are 4,4’-methylenebis(phenyl isocyanate), tolylene-2,4-diisocyaate and 3,3’-dimethoxy-4,4’- biphenylene diisocyanate. Moreover, a trifunctionalized disperse red-type chromophore (TDR-19) was synthesized for crosslinking.
The DR-PUn’s are readily soluble in polar aprotic organic solvents, like tetrahydrofuran, N,N-dimethyl formamide, cyclohexanone, etc. Good optical quality, poled films were prepared by spin coating, followed by thermal corona poling. The glass transition temperatures (Tg) of DR-PUn’s determined by differential scanning calorimetry (DSC) decrease in the order: DR-PU2 > DR-PU1 > DR-PU3, corresponding to 142.3℃, 138.5℃ and 136.7℃, respectively. They showed no melting points in the DSC curves, suggesting an amorphous phase. The order parameters of DR-PU1, DR-PU2 and DR-PU3 were obtained to be 0.210, 0.262 and 0.178 respectively from absorption measurements before and after poling. The temporal stability of NLO properties for the three DR-PUn’s increases with Tg of the polyurethanes. The poled DR-PUn films exhibited good thermal stability of NLO properties at 90℃. The synthesis of TDR-19 is for the further study of thermally cross-linked systems. The synthesis experiences and property investigations of TDR-19 can be the extension of relative works.
1.Prasad P. N. and Williams D. J.,“Introduction to Nonlinear Optical Effects in Molecules and Polymers”, Willey, New York, U.S.A. (1991)
2.Franken P. A., Hill A. E., Peter C. W. and Weinreich G., Phys. Rev. Lett., 17, 118 (1961)
3.Marder S. R., Sohn J. E. and Stucky G. L.,“Materials for Nonlinear Opticals:Chemical Perspectives”, ACS, Washington, DC (1991)
4.Singer K. D. and Sohn J. E.,“Electroresponsive Molecules and Polymeric Systems”, Marcel Dekker Inc., New York, U.S.A. (1991)
5.Gupta M. C.,“The Handbook of Photonic”, CRC press, Boca Raton, FL (1997)
6.Saleh B. E. A. and Teich M. C.,“Fundamental of Photonic”, Wiley, New York.
7.Oudar J., Chemla D. and Batifol E., J. Chem. Phys., 66, 2664 (1977)
8.Mortazavi M. A., Knoesen A. and Kowel S. T., J. Opt. Soc. Am. B, 6, 733 (1989)
9.Sigelle M. and Hierle R., J. Appl. Phys., 52, 4199 (1981)
10.Uchiki H. and Kobavashi T., J. Appl. Phys., 62, 2625 (1988)
11.Levy Y., Dumont V. D. M., Robin P. and Chastaing E.,“Molecules for Nonlinear Optics and Photonics”, (1989)
12.Teng C. and Man H., Appl. Phys. Lett., 56, 1734 (1990)
13.Mortazavi M. A., Knoesen A., Kowel S. T., Henry R. A., Hoover J. M. and Lindsay G. A., Appl. Phys., 53, 287 (1991)
14.Schildkraut J. S., Appl. Opt., 29, 2839 (1990)
15.Shuto Y. and Amino M., J. Appl. Phys., 77, 4632 (1995)
16.Stahelin M., Walsh C. A., Burland D. M., Miller R. D., Twieg R. J. and Volksen W., J. Appl. Phys., 73(12), 8471 (1993)
17.Lindsey C. and Patterson G., J. Chem. Phys., 73, 3348 (1980)
18.Chung S. and Stevens J., Am. J. Phys., 59, 1024 (1991)
19.Burland D. M., Miller R. D. and Walsh C. A., Chem. Rev., 94, 31 (1994)
20.Davydov B. L., Dekacheva L. D., Dunina V. V., Zhabotinskii M. E., Zolin V. F., Koreneva L. G. and Samokhina M. A., JEPT Lett., 12, 16 (1970)
21.Davydov B. L., Dekacheva L. D., Dunina V. V., Zhabotinskii M. E., Zolin V. F., Koreneva L. G. and Samokhina M. A., Opt. Spectrosc., 30, 274 (1970)
22.Koreneva L. G., Zolin V. F. and Davydov B. L.,“Molecular Chemistry in NLO”, Nauka, Moskow (1975)
23.Hampsch H. L., Yang J., Wong G. K. and Torkelson J. M., Macromolecules, 23, 3640 (1990)
24.Hampsch H. L., Yang J., Wong G. K. and Torkelson J. M., Macromolecules, 21(2), 526 (1988)
25.Havinga E. E. and Pelt P. V., Mol. Cryst. Liq. Cryst., 52, 145 (1979)
26.Meredith G. R., VanDusen J. G. and Williams D. J., Macromolecules, 15, 1385 (1982)
27.Becker M. W., Sapochak L. S., Ghosen R., Xu C., Dalton L. R., Shi Y., Steier W. H. and Jen A. K. -Y., Chem. Mater, 6(2), 104 (1994)
28.Nemoto N., Miyata F., Nagase Y., Abe J., Hasegawa M. and Shirai Y., J. Mater. Chem., 6(5), 711 (1996)
29.Wang N. P., Leslie T. M., Wang S. and Kowel S. T., Chem. Mater., 7, 185 (1995)
30.Yang S., Peng Z. and Yu L., Macromolecules, 27, 5858 (1994)
31.Yu D. and Yu L., Macromolecules, 27, 6718 (1994)
32.Yu D. and Yu L., J. Am. Chem. Soc., 117, 11680 (1995)
33.Yu D., Yu L. and Gharavi A., Macromolecules, 29, 6139 (1996)
34.Eich M., Sen A., Looser H., Bjorklund G. C., Swalen J. D., Twieg R. and Yoon D. Y., J. Appl. Phys., 66, 2559 (1989)
35.Smith S. et al, 31, 2899 (1993)
36.Eich M., Reck B., Yoon D. Y., Willson C. G. and Bjorklund G. C., J. Appl. Phys., 66, 3241 (1989)
37.Jungbauer D., Reck B., Twieng R., Yoon D. Y., Willson C. G. and Swalen J. D., Appl. Phys. Lett., 56(26), 2610 (1990)
38.Li L. et al, Appl. Phys., B53, 279 (1991)
39.Tsutsumi N., Yoshizaki S., Sakai W. and Kiyotsukuri T., Macromolecules, 28, 6437 (1995)
40.Mandal B. K., Jeng R. J., Kumar J. and Tripathy S. K., Makromol. Chem. Rapid Commun., 12, 607 (1991)
41.Kato M. and Hirayama T., Makromol. Rapid Commun., 15, 741 (1994)
42.Kato M., Kanda K., Kimura T., Matsuda H. and Nakanishi H., Polymer Bulletin, 36, 407 (1996)
43.Levine B. F. and Bethea G. F., J. Chem. Phys., 63, 2666 (1975)
44.Ouder J. L., J. Chem. Phys., 67, 466 (1977)
45.Cheng L. -T., Tam W., Stevenson S. H., Meredith G. R., Rikken G. and Marder S., J. Phys. Chem., 95, 10631 (1991)
46.Cheng L. -T., Tam W., Marder S. R., Stiegman A. E., Rikken G. and Spangler C. W., J. Phys. Chem., 95, 10643 (1991)
47.Dulcic A. and Sauteret C., J. Chem. Phys., 69, 3453 (1978)
48.Ouder J. L. and Chemla D. S., J. Chem. Phys., 66, 2664 (1977)
49.Dulcic A., Flytzanis C., Tang C. L., Pepin D., Fitzon M. and Hoppiliard Y., J. Chem. Phys., 74, 1559 (1981)
50.Morley J. D., Docherty V. J. and Pugh D., J. Chem. Soc. Perkin Trans., 2, 1351 (1987)
51.Marder S. R., Beratan D. N. and Cheng L. -T., Science, 252, 103 (1991)
52.Xu C., Wu B., Dalton L. R., Ramon P. M., Shi Y. and Steier W. H., Macromolecules, 25, 6716 (1992)
53.Chen M., Dalton L. R., Yu L. P., Shi Y. Q. and Steier W. H., Macromolecules, 25, 4032 (1992)
54.Shi Y., Steier W. H., Chen M., Yu. L. and Dalton L. R., Apply. Phys. Lett., 60, 2577 (1992)
55.Mao S. S. H., Ra Y., Guo L., Zhang C., Dalton L. R., Chen A., Garner S. and Steier W. H., Chem. Mater., 10, 146 (1998)
56.Francis C. V., Liu J., White K. M. and Kitipichai P. K., Ind. Eng. Chem. Res., 38, 2 (1999)
57.White K. M., Kitipichai P. K. and Francis C. V., Apply. Phys. Lett., 66(23), 3099 (1995)