| 研究生: |
吳明修 Wu, Ming-Hsiu |
|---|---|
| 論文名稱: |
以電子束蒸鍍成長多孔氧化鋯與氧化鈰應用於固態燃料電池電極 The application of the doped porous ceria and zirconia films by EB-PVD in the electrodes of SOFCs |
| 指導教授: |
黃肇瑞
Huang, Jow-Lay |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 氧化鋯 、氧化鈰 、電子束蒸鍍 、斜角度沉積 、三相界面 、固態燃料電池電解質 |
| 外文關鍵詞: | YSZ, SDC, E-beam, GLAD, TPB, SOFC |
| 相關次數: | 點閱:97 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
異質摻雜之氧化鋯與氧化鈰能有效的傳導氧離子,目前有相當多的研究在進行中。將這兩個材料應用於固態燃料電池中時,其厚度與陰極、陽極材料之接觸介面影響發電效率。於本研究中,多孔性的釤摻雜氧化鈰(SDC)與釔安定氧化鋯(YSZ)柱狀晶膜以電子束蒸鍍輔以斜角度沉積成長,再於其上成長La(Sr)MnO3-δ(LSM)、La(Sr)CoFeO3-δ(LSCF)與白金,以觀察並討論其表面形貌與三相界面對其高溫電性的影響。
研究的第一部分結果顯示,利用電子束蒸鍍法輔以斜角度沉積技術製備多孔柱狀晶質氧化鋯薄膜與LSM雙層膜,LSM需要進行900℃退火來形成結晶相。YSZ與LSM雙層膜於低溫的阻抗,遠低於LSM單層膜。
第二部份中,於多晶氧化鈰基板雙面上分別製備YSZ/Ni薄膜與SDC/LSCF。採用兩種方式於製作SDC之上的LSCF層,其一以傾斜基板垂線80o進行成長,不施加旋轉(Type-G);另一方式不施加基板傾斜(Type-N)。於600℃,Type-G所獲功率密度為5.7 mWcm-2,約為Type-N之兩倍,是由於氧氣較易於Type-G之SDC/LSCF介面進行交換。
於第二部分中另外發現LSCF共析出兩個氧化物相,因此在第三部份中,以電子束蒸鍍厚度80~240 nm白金以取代LSCF層。240 nm 厚的白金層於900℃熱處理後,在700℃下產生20 mWcm-2的功率密度,80 nm白金層表面較為緻密,功率密度為4 mWcm-2。由此實驗證實了第二部分實驗中氣體交換對於功率有很大的影響。
於第二部分的實驗發現功率密度低於SDC為基板之理論值,於最後的工作中,SDC基板沉積YSZ緻密薄膜後進行1000℃之熱處理,於介面之TEM觀察中發現接近SDC基板之YSZ薄膜的部分之高解析影像中,111晶面距離增大為3.2Å。另外由EDS分析也發現大量鈰離子與釤離子擴散至YSZ薄膜中,導電率因此下降。
Yttrium doped porous zirconia film was deposited on 10 at.% samaria doped ceria by electron beam evaporator with assistance of glancing angle technique. La(Sr)MnO3-δ(LSM), La(Sr)CoFeO3-δ(LSCF) and Pt were deposited on it as upper layer to serve as cathode. In the first part, YSZ/LSM bilayer exhibits lower resistance than LSM single layer on thick YSZ plate below 700℃. For intermediate temperature use, SDC plate and LSCF replaced the YSZ plate and LSM, but the power performance was 5.7 mWcm-2 at 600℃. In the second part, the LSCF film deposited by E-beam required further heat treatment, and cobalt oxide formed. For further examining this design, the interface of YSZ/SDC after 1000℃ heat treatment was observed under TEM and EDS. In the final part, different thickness of Pt deposited on YSZ columns with YSZ single crystal substrate, and the obtained highest power density was 20 mWcm-2 at 600℃.
[1] J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2003, 2nd.
[2] W. Nernst, "Uber Die Elektrolytische Leitung Fester Korper Bei Sehr Hohen Temperaturen," Z. Elektrochem., 6 (1899) 41-43.
[3] R. N. Blumenthal, F. S. Brugner, and J. E. Garner, The Electrical Conductivity of CaO-Doped Nonstoichiometric Cerium Dioxide from 700 ℃ to 1500℃, J. Electrochem. Soc. 120 (1973) 1230.
[4] S. Yu, Q. Wu, M. Tabib-Azar, and C. Liu, Sens. Actuators, B 85 [3] (2002) 212-218.
[5] S. A. Anggraini, M. Breedon, and H. Ikeda, N. Miura, Appl. Mater. Interfaces 5 (2003) 12099-12106.
[6] M. Lundberg, B. Skarman, and L. R. Wallenberg, Crystallography and porosity effects of CO conversion on mesoporous CeO2, Microporous Mesoporous Mat. 69 (2004) 187-195.
[7] W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, A. Steinfeld, High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria, Science 330 (2010) 1797-1800.
[8] Advances in Ceramics, Vol.12 Science and Technology of Zirconia II. edited by Claussen, M. Ruhle, and A.H. Heuer. American Ceramic Society, Columbus, OH, 1984.
[9] S. Omar, E. D. Wachsman, J. L. Jones, and J. C. Nino, Crystal Structure–Ionic Conductivity Relationships in Doped Ceria Systems, J. Am. Ceram. Soc. 92 [11] (2009) 2674–2681.
[10] H. Yahiro, Y. Baba, K. Eguchi, and H. Arai, High Temperature Fuel Cell with Ceria-Yttria Solid Electrolyte, J. Electrochem. Soc. 135[8] (1988) 2077-2080.
[11] A. Infortuna, A. S. Harvey, and L. J. Gauckler, Microstructures of CGO and YSZ Thin Films by Pulsed Laser Deposition, Adv. Funct. Mater. 18 (2008) 127–135.
[12] D. R. Mckenzie, D. J. H. Cockayne, and M. G. Sceats, Microstructure of zirconia films deposited with ion assistance, J. Mater. Sci. 22 (1987) 3725-3731.
[13] Y. H. Wang, X. P. Li, Phase structure characteristics of r.f. reactively sputtered zirconia film, Thin Solid Films 250 (1994) 132-134.
[14] A. Kopia , K. Kowalski , M. Chmielowska , Ch. Leroux, Electron microscopy and spectroscopy investigations of CuOx-CeO2-δ/Si thin film, Surface Science 602 (2008) 1313-1321.
[15]Y. Shen, S. Shao, H. Yu, Z. Fan, H. He, J. Shao, Influences of oxygen partial pressure on structure and related properties of ZrO2 thin films prepared by electron beam evaporation deposition, Appl. Surf. Sci. 254 (2007) 552-556
[16] H. J. Ratzer-Scheibe, U. Schulz, The effect of heat treatment and gas atmosphere on the thermal conductivity of APS and EB-PVD PYSZ thermal barrier coatings. Surf. Coat. Technol. 201 (2007) 7880-7888
[17] P. Zhao, A. Ito, Takashi Goto, Laser chemical vapor deposition of single-crystalline transparent CeO2 films, Surf. Coat. Technol. 235 (2013) 273–276
[18] W. R. Grove, "On Voltaic Series and the Combination of Gases by Platinum," Philos. Mag., 14 (1839) 127-130.
[19] Gaskell, David R.," Introduction to the thermodynamics",1973, 3rd ed.
[20] L. Carrette, K. A. Friedrich, U. Stimming, Fuel Cells Principles, Types, Fuels and applications, Chem. Phys. Chem. 1 (2000) 162-193.
[21] M. D. Gasda, G. A. Eisman, and D. Gall, Nanorods PEM Fuel Cell Cathode with Controlled Porosity, J. Electrochem. Soc. 157[3] (2010) B437-B440.
[22] B. S. Baker, H. C. Maru, in Fourth. Int. Symp. Carbonate Fuel Cell technology, (Eds.: J. R. Selman, I. Uchida, H. Wendt, D. A. Shores, T. F. Fuller), Montreal, PQ,1997, 238
[23] W. Nernst, "Uber Die Elektrolytische Leitung Fester Korper Bei Sehr Hohen Temperaturen," Z. Elektrochem., 6 (1899) 41-43.
[24] E. Baur and H. Preis, "Uber Brennstoff-Ketten Mit Festleitern," Z. Elektrochem., 43 (1937) 727-732.
[25] J. Larminie and A.Dicks: "Fuel cell systems explaied", chapter 8, Wiley, UK, 2003, 229-308.
[26] K. Kendall, Progress in solid oxide fuel cell materials, Int. Mater. Rev., 50 [5] (2006) 257-264.
[27] S. C. Singhal, MRS Bulletin, March, (2000) 16
[28] J. H. Joo, G. M. Choi, Thick-film electrolyte (thickness <20 μm)- supported solid oxide fuel cells, J. Power Sources 180 (2008) 195-198.
[29] W. Vielstich, H. A. Gasteiger, and A. Lamm: "Handbook of fuel cells- fundamentals, technology and application", Volume 1: Fundamentals and Survey of system, chapter 20, Wiley, USA, 2001, 342-347.
[30] T. Ishihara, M. Honda, T. Shibayama, H. Minami, H. Nishiguchi, and Y. Takita, Intermediate Temperature Solid Oxide Fuel Cells Using a New LaGaO3 Based Oxide Ion Conductor, J. Electrochem. Soc., 145 (1998) 3177-3183.
[31] S. P. Jiang and S. H. Chen, A review of anode materials development in solid oxide fuel cells, Journal of Materials Science, 39 (2004) 4405-4439.
[32] Y. B. Kim, T. P. Holme, T. M. Gur, F. B. Prinz. Surface-Modified Low-Temperature Solid Oxide Fuel Cell, Adv. Funct. Mater. 21 (2011) 4684-4690.
[33] L. Borovskikh, G. Mazo, E. Kemnitz, Reactivity of oxygen of complex cobaltates La1-xSrxCo3-δ and LaSrCoO4, Solid Statr Sciences, 5 (2003) 409-417.
[34] S. P. Simner, M. D. Anderson, and J. W. Steveson, La(Sr)FeO3 SOFC Cathodes with Marginal Copper Doping, J. Am. Ceram. Soc.,87[8] (2004) 1471-1476.
[35] H. G. Scott, Phase relationships in the zirconia-yttria system, J. Mater. Sci. 10 (1975) 1527-1535.
[36] R. D. Shannon, Acta crystallographica, A32 (1976) 751
[37] J. F. Baumard and P. Abelard, "Defect Structure and Transport Properties of ZrO2 Based Solid Electrolytes"; Ref. 6, 555-571.
[38] J. Larminie and Dicks: "Fuel cell systems explained", chapter 3, Wiler, UK, 2003, 53-59
[39] I. T. Ellen and A. V. Virkar: "High temperature solid oxide fuel cells: fundamentals, design and applications", chapter 9, Elsevier, Oxford, 2003, 229-260.
[40] T. Horita, K. Yamaji, N. Sakai, Y. Xiong, T. Kat, H. Yokokawa, T. Kawada, Imaging of oxygen transport at SOFC cathode/electrolyte interfaces by novel technique, J. Power Sources, 106 (2002) 224-230.
[41] S. B. Alder, J. A. Lane, and B. C. H. Steele, Electrode Kinetics of Porous Mixed-Conducting Oxygen Electrodes , 143[11] (1996) 3554-3564.
[42] U. Mazur, A. C. Clearly, Infrared and tunneling spectroscopy study of aluminum nitride films prepared by ion-beam deposition, J. Phys. Chem 94, (1990) 189-194.
[43] B. Chapman, "Glow discharge process", John Wiley and Sons, New York, 1980.
[44] J. M. Nieuwenhuizen, H. B. Haanstra, philips. Tech. Rev. 27 (1996) 8.
[45] K. N. Tu, J. W. Mayer, and L. C. Feldman, Electronic Thin Film Science for Electrical Engineers and Materials Scientist, Macmillan, 1992.
[46] K. Robbie and M. J. Brett, Sculptured thin films and glancing angle deposition: Growth mechanics and applications, J. Vac. Sci. Technol. A 15 (1997) 1460
[47] R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otan˜o, A. Lakhtakia, Engineered sculptured nematic thin films, J. Vac. Sci. Technol. A 15[4] (1997) 2148-2152
[48] L. Y. Woo, Characterizing Fiber-Reinforced Composite Structures using AC-Impedance Spectroscope (AC-IS), 2005.
[49] J. C. Ruiz-Morales, J. Canales-Vazquez, J. Pena-Martinez, D. M. Lopez, P. Nunez, On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O3-δas both anode and cathode material with improved microstructure in solid oxide fuel cells, Electrochim. Acta 52 (2006) 278-284.
[50] J. Yoon, S. Cho, J. H. Kim, J. H. Lee, Z. Bi, A. Serquis, X. Zhang, A. Manthiram, H. Wang, Vertically Aligned Nanocomposite Thin Films as a Cathode/Electrolyte Interface Layer for Thin-Film Solid Fuel Cells, Adv. Funct. Mater., 19 (2009) 3868-3873
[51] A. Ignatiev, X. Chen, N. Wu, Z. Lu, L. Smith, Nanostructured thin solid oxide fuel cells with high power density, Dalton Trans., 40 (2008) 5501-5506.
[52] V. M. Janardhanan, V. Heuveline, O. Deutschmann, Three-phase boundary length in solid-oxide fuel cells: A mathematical model, Journal of Power Sources 178 (2008) 368-372.
[53] J. R. Wilson, W. Kobsiriphat, R. Mendoza, H. Y. Chen, J. M. Hiller, D. J. Miller, K. Thornton, P. W. Voorhees, S. B. Adler and S. A. Barnett, Three-dimensional reconstruction of a solid-oxide fuel-cell anode,Nat. Mater. 5, 541 (2006)
[54] A. Hammouche, E. Siebert and A. Hammou, Crystallographic, thermal and electrochemical properties of the system La1-xSrxMnO3 for high temperature solid electrolyte fuel cells, Materials Research Bulletin 24[3] (1989) 367.
[55] L. G. Tejuca, J. L. G. Fierro, J. M. D. Tascon, Structure and Reactivity of Perovskite-Type Oxides, Advances In Catalysis 36 (1989) 237.
[56] J.L. Hueso, D. Martinez-Martinez a, A. Caballero, A.R. Gonzalez-Elipe and B.S. Munc, M. Salmeron, Near-ambient X-ray photoemission spectroscopy and kinetic approach to the mechanism of carbon monoxide oxidation over lanthanum substituted cobaltites ,Catal. Commun. 10 (2009) 1898-1902.
[57] V. A. Cherepanov,1 L. Yu. Barkhatova, V. I. Voronin, Phase Equilibria in the La-Sr-Mn-O System, J. Solid State Chem. 134 (1997) 38-44
[58] M. J. Jørgensen, M. Mogensen, Impedance of Solid oxide Fuel Cell LSM/YSZ Composite Cathodes, J. Electrochem. Soc.148[5] (2001) A433-A442.
[59] I. Yasuda, K. Ogasawara, M. Hishinuma, T. Kawada, M. Dokiya, Oxygen tracer diffusion coefficient of (La, Sr)MnO3, Solid State Ion. 86-99 (1996) 1197-1201.
[60] A. V. Virkar, Theoretical Analysis of Solid Oxide Fuel Cells with Two-Layer, Composite Electrolyte: Electrolyte Stability, J. Electrochem. Soc. 138[5] (1991) 1481-1487.
[61] Westinghouse Electric Corp., “High-Temperature Solid Oxide Electrolyte Fuel Cell Power Generation System, Quarterly Technical Progress Summary Report, January I , 1984-March 31, 1984,” Rept. No. DOEIETII7089-2217. U.S. Dept. of Energy, Washington, DC, 1984.
[62] L. W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 2. The system La1-xSrxCo0.2Fe0.8O3, Solid State Ion. 76 ( 1995) 273-283
[63] F. Qiang, K.N. Sun, N.Q. Zhang, X.D. Zhu, S.R. Le, D.R. Zhou, Characterization of electrical properties of GDC doped A-site deficient LSCF based composite cathode using impedance spectroscopy, J. Power Sources 168 (2007) 338-345
[64] E. Zhao, Z. Jia, Li Zhao, Y. Xiong, C. Sun, M. E. Brito, One dimensional La0.8Sr0.2Co0.2Fe0.8O3-δ/Ce0.8Gd0.2O1.9 nanocomposite cathodes for intermedite temperature solid oxide fuel cells,J. Power Sources 219 (2012) 133-139
[65] S. Wang, M. Katsuki, M. Dokiya, T. Hashimoto, High temperature properties of La0.6Sr0.4Co0.8Fe0.2O3-δ phase structure and electrical conductivity, Solid State Ion. 159 (2003) 71-78
[66] C. Ding, H. Lin, K. Sato, T. Hashida, Synthesis of La0.8Sr0.2Co0.8Fe0.2O3 Nanopowders and Their Application in Solid Oxide Fuel Cells, J. Fuel Cell Sci. Technol. 8 (2011) 051016.
[67] E. Lust, P. Möller, I. Kivi, G. Nurk, S. Kallip, P. Nigu, K. Lust, Optimization of the Cathode Composition for the Intermediate- Temperature SOFC, J. Electrochem. Soc. 152[12] (2005) A2306-A2308.
[68] J. W. Kim, A. V. Virka, K. Z. Fung, K. Mehta, S. C. Singhal, Polarization Effects in Intermediate Temperature, Anode-Supported Solid Oxide Fuel Cells, J. Electrochem. Soc. 146[1] (1999) 69-78.
[69] F. Meng, C. Zhang, Q. Bo, Q. Zhang, Hydrothermal synthesis and room-temperature ferromagnetism of CeO2 nanocolumns, Mater. Lett. 99 (2013) 5-7.
[70] A. C. Larson and R. B. V. Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR (2005) 86-748.
[71] A. Karthikeyan, C. Chang, S. Ramanathan, High temperature conductivity studies on nanoscale yttria-doped zirconia thin films and size effect, Appl. Phys. Lett. 89 (2006) 183116.
[72] A. Infortuna, A.S. Harvey, L.J. Gauckler, Microstructure of CGO and YSZ Thin Films by Pulsed Laser Deposition, Adv. Funct. Mater. 18 (2008) 127.
[73] X. D. Zhou, B. Scarfino, H. U. Anderson, Electrical conductivity and stability of Gd-doped ceria/Y-doped zirconia ceramics and thin films, Solid State Ion. 175 (2004) 19.
[74] A. Martinez-Amesti, A. Larra˜naga, L.M. Rodriguez-Martinez, M.L. No, J.L. Pizarro, A. Laresgoiti, M.I. Arriortua, Influence of SDC-YSZ Contact at Different Atmospheres in SOFC Operation and Processing Conditions, J. Electrochem. Soc. 156 (7) (2009) B856–B861