簡易檢索 / 詳目顯示

研究生: 斯豪偉
Ssu, Hao-Wei
論文名稱: 臭氧對窄槽內火焰加速及緩燃焰轉爆震波之影響
Influence of Ozone on Flame Acceleration and Deflagration-to-Detonation Transition in Narrow Channels
指導教授: 吳明勳
Wu, Ming-Hsun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 177
中文關鍵詞: 高速schlieren顯影微槽臭氧火焰加速爆震波轉變
外文關鍵詞: High speed schlieren visualization, ozone, narrow channel, flame acceleration, detonation transition
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要分為兩部份探討微小尺度爆震管之實驗,第一部份為添加臭氧對於丙烷/氧氣1×1 mm2的方形微槽利用火焰螢光和schlieren顯影,觀察緩燃焰轉爆震波之影響、火焰加速、爆震波傳遞之變化。可以發現在貧油及化學當量之情況下,在緩燃焰中添加臭氧之反應波速度會較未添加來的快且更快轉為爆震波。而在越貧油之條件下,添加臭氧所影響之爆震波轉變時間越多,而在轉為爆震波後,發現在爆震波階段中有無添加臭氧不管在貧油或富油之階段對於爆震波速度並沒有太大之影響。
    第二部份為探討乙烯/氧氣從點火到緩燃焰轉變為爆震波之過程,首先針對化學當量的乙烯/氧氣在1×1 mm2的方形微槽利用高速schlieren顯影探討反應波與震波動態解析,並且著重探討震波叢集階段,進一步改變乙烯/氧氣之當量比,觀察震波叢集階段之流場特徵,發現在當量比為1.3時-angle為最小,且趨勢為U型曲線且與爆震波轉變之時點趨勢為一致。乙烯/氧氣在改變管槽尺寸條件後,發現在管徑縮小時,流場特徵的時點都提早,但-angle卻是隨著管徑變小而變。最後觀察燃料種類及臭氧之添加對於震波叢集特徵之影響。

    To investigate the flame acceleration process in narrow channels on the high-speed visualization systems were used. The study is divided into two parts to explore the experiment of microscale detonation channel. The first part is that the addition of ozone to the propane/oxygen in 1×1 mm2 channel size using chemiluminescence and schlieren to observe the flame acceleration, deflagration-to-detonation, and steady detonation propagation. It can be found that in the condition of fuel lean and stoichiometric, the adding ozone is faster than no-adding ozone to generate DDT. Adding ozone in the case of fuel rich does not have much effect on generating DDT. After the detonation is generated, the addition of ozone has little effect on the detonation propagation. The second part is to explore the process of ethylene/oxygen flame acceleration and deflagration-to-detonation transition and focus on the stage of shock cluster. We use the high-speed schlieren to analysis the relationship of the reaction wave and shock wave. Experiments show that a coupled shock cluster – reaction front structure emerges prior to detonation transition in ethylene/oxygen mixture in small channels. The structure features checkered oblique shock pattern interweaved with reaction front. It is found that the angle between the parallel oblique shocks in the structure and the side wall, defined as -angle, does not change over time in a certain mixture. And observing the characteristics of shock cluster as a function of equivalence ratio and channel size.

    第一章 緒論 ..1 1-1 研究動機與背景 1 1-2 文獻回顧 3 1-3 研究目的 17 1-4 本文架構 18 第二章 實驗方法與架設 19 2-1 爆震管設計 19 2-2 臭氧產生與濃度校正 21 2-3 質流量控制系統 23 2-4 點火系統 29 2-5 Schlieren顯影法 32 2-6 高速顯影系統 34 2-7 實驗時序控制與操作流程 35 2-8 化學平衡計算 38 2-9 層流火焰速度計算 39 2-10不確定性分析 40 第三章 添加臭氧對於微槽火焰傳遞影響 45 3-1 丙烷/氧氣火焰加速及緩燃焰轉爆波過程 45 3-2丙烷/氧氣/臭氧火焰加速及緩燃焰轉爆波過程 52 3-3添加臭氧對火焰加速影響之分析與討論 56 3-3-1不同當量比添加臭氧之火焰加速過程 56 3-3-2 不同臭氧濃度之火焰加速過程 70 3-3-3前導震波 72 3-3-4斜震波 72 3-3-5先驅震波 73 3-3-6震波叢集 73 3-3-7爆震波轉變 74 3-3-8臭氧對火焰加速影響之分析與討論 75 3-4 添加臭氧對於爆震波傳遞影響 91 3-5小結 95 第四章 震波叢集產生與特性 ..97 4-1 火焰加速及緩燃焰轉爆震波過程 97 4-1-1反應波與震波動態顯影 97 4-1-2震波叢集結構之特徵:-angle 100 4-2 當量比之影響 104 4-2-1不同當量比下反應波與震波動態之顯影 104 4-2-2當量比對震波叢集特性之影響 113 4-2-3當量比對爆震波轉變之影響 123 4-3 管槽尺寸之影響 124 4-3-1不同管徑下反應波與震波動態之顯影 124 4-3-2管槽尺寸對震波叢集特性之影響 128 4-3-3管槽尺寸對爆震波轉變之影響 133 4-4 燃料之影響 134 4-4-1燃料對震波叢集特徵性之影響 134 4-4-2燃料對爆震波轉變與傳遞之影響 140 4-5 添加臭氧之影響 143 4-5-1添加臭氧對震波叢集特性之影響 143 4-5-2添加臭氧對爆震波轉變與傳遞之影響 147 4-6 低速爆震波模式之特性 149 4-7 小結 151 第五章 結論與未來展望 153 5-1 結論 153 5-2 未來展望 155 參考文獻 156 附錄A 爆震管組建工程圖 164 附錄B 層流火焰速度計算之Cantera程式碼 166 附錄C 點火延遲時間計算之Cantera程式碼 169 附錄D 敏感度分析計算之Cantera程式碼 173 附錄E 反應路徑之Cantera程式碼 176

    [1] M.H. Wu and T.H. Lu (2012), Development of a chemical microthruster based on pulsed detonation, Journal of Micromechanics and Microengineering 22, 105040.
    [2] 陳咨爾,無閥式微型脈衝爆震引擎進氣流道內之氣動力動態,國立成功大學碩士論文,2015。
    [3] 鄭佳和,燃料進氣角度對無閥式微脈衝爆震推進器操作之影響,國立成功大學碩士論文,2014。
    [4] Y.B. Zel'dovich, S.M. Kogarko and N.N. Simonov (1957), An Experimental Investigation of Spherical Detonation in Gases, Soviet Physics Technical Physics 1, 1689-1713.
    [5] D.M. Valiev, V. Akkerman, M. Kuznetsov, L.E. Eriksson and C.K. Law (2013), Influence of gas compression on flame acceleration in the early stage of burning in tubes, Combustion and Flame 160, 97-111.
    [6] S. Yang, A. Saha, F. Wu and C.K. Law (2016), Morphology and self-acceleration of expanding laminar flames with flame-front cellular instabilities, Combustion and Flame 171, 112-118.
    [7] W. Han, Y. Gao and C.K. Law (2017), Flame acceleration and deflagration-to-detonation transition in micro- and macro-channels: an integrated mechanistic study, Combustion and Flame 176, 285-298.
    [8] M.F. Ivanov, A.D. Kiverin, I.S. Yakovenko and M.A. Liberman (2013), Hydrogen–oxygen flame acceleration and deflagration-to-detonation transition in three-dimensional rectangular channels with no-slip walls, International Journal of Hydrogen Energy 38, 16427-16440.
    [9] E. Dzieminska and A.K. Hayashi (2013), Auto-ignition and DDT driven by shock wave - boundary layer interaction in oxyhydrogen mixture, International Journal of Hydrogen Energy 38, 4185-4193.
    [10] T. Machida, M. Asahara, A. Koichi, A.K. Hayashi and N. Tsuboi (2014), Three-dimensional simulation of deflagration-to-detonation transition with a detailed chemical reaction model, Combustion Science and Technology 186, 1758-1773.
    [11] R.W. Houim, A. Ozgen and E.S. Oran (2016), The role of spontaneous waves in the deflagration-to-detonation transition in submillimetre channels, Combustion Theory and Modelling 20, 1068-1087.
    [12] 邱柏淵,微槽內爆震焰產生過程中震波與反應波之交互作用,國立成功大學碩士論文,2012。
    [13] L. Kagan and G. Sivashinsky (2008), Autoignition due to hydraulic resistance and deflagration-to-detonation transision, Combustion and Flame 154, 186-190.
    [14] 王長禹,圓形截面管內之預混焰傳遞模式解析,國立成功大學碩士論文,2010。
    [15] 王俊凱,預混焰於微管槽內加速機制之研究,國立成功大學碩士論文,2010。
    [16] 詹弘凭,以高速schlieren顯影解析微槽內乙烯/氧氣預混焰加速即轉震波之動態,國立成功大學碩士論文,2017。
    [17] K. Wang and W. Fan (2017), Efforts on High-Frequency Pulse Detonation Engines, Journal of Propulsion and Power 33(1), 17-28.
    [18] R. Driscoll, S. Randall, A. George, V. Akkerman and L. Eriksson (2016), Shock-Initiated Combustion in an Airbreathing, Pulse Detonation Engines, AIAA Journal 33(1), 936-949.
    [19] H. Zhao, X. Yang and Y. Ju (2016), Kinetic studies of ozone assisted low temperature oxidation of dimethyi ether in a flow reacter using molecular-beam mass spectrometry, Combustion and Flame 193, 253-260.
    [20] J. Sepulveda, A. Rousso, H. Ha, T. Chen, V. Cheng, W. Kong and Y. Ju, (2019), Kinetic Enhancement of Microchannel Detonation Transition by Ozone Addition to Acetylene Mixtures, AIAA Journal 57(2), 476-481.
    [21] V.N. Gamezo and E.S. Oran (2006), Flame acceleration in narrow channels: applications for micropropulsion in low-gravity environments, AIAA Journal 44, 329-336.
    [22] H. Xiao, Q. Wang, X. Shen, S. Guo and J. Sun (2013), An experimental study of distorted tulip flame formation in a closed duct, Combustion and Flame 160, 1725-1728.
    [23] J.D. Ott, E.S. Oran and J.D. Anderson Jr (2003), A mechanism for flame acceleration in narrow tubes, AIAA Journal 41(7), 1391-1396.
    [24] E. Dzieminska and A.K. Hayashi, (2013), Auto-ignition and DDT driven by shock wave – Boundary layer interaction in oxyhydrogen mixture, Hydrogen Energy 38, 4185-4193.
    [25] M. Kuznetsov, V. Alekseev, I. Matsukov and S. Dorofeev (2005), DDT in a smooth tube filled with a hydrogen–oxygen mixture, Shock Waves 14, 205-215.
    [26] P.A. Urtiew and A.K. Oppenheim (1966), Experimental observations of transition to detonation in an explosive gas, Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences 295, 13-28.
    [27] H. Wei, J. Zhou, D. Gao and Z. Xu (2017), Effects of the equivalence ratio on turbulent flame–shock interactions in a confined space, Combustion and Flame 186, 247-262.
    [28] E. Schultz, E. Wintenberger and J. Shepherd, Investigation of Deflagration to Detonation Transition for Application to Pulse Detonation Engine Ignition Systems, Proceedings of the 16th JANNAF Propulsion Symposium, 1999.
    [29] M.F. Ivanov, A.D. Kiverin and M.A. Liberman (2011), Flame acceleration and DDT of hydrogeneoxygen gaseous mixtures in channels with no-slip walls, Hydrogen Energy 36, 7714-7727.
    [30] W. Han, Y. Gao, and K. Law (2017), Flame acceleration and deflagration-to-detonation transition in micro- and macro-channels: An integrated mechanistic study, Combustion and Flame 176, 285-298.
    [31] A.M. Khokhlov, and E.S. Oran (1999), Numerical Simulation of Deflagration-to-Detonation Transition: The role of Shock-Flame Interactions in Turbulent Flames, Combustion and Flame 117, 323-339.
    [32] J. Yanez, and M. Kuznetsov (2016), Experimental study and theoretical analysis of a ‘strange wave’, Combustion and Flame 167,494-496.
    [33] P. Urtiew and A.K. Oppenheim (1966), Experimental observations of the transition to detonation in an explosive gas, Proc. Roy. Soc. Lond Ser. 295, 13-28.
    [34] C. Wang, Y. Zhao and B. Zhang (2016), Numerical simulation of flame acceleration and deflagration-to-detonation transition of ethylene in channels, Journal of Loss Prevention in the Process Industries 43, 120-126.
    [35] E. Dzieminska and A.K. Hayashi (2013), Auto-ignition and DDT driven by shock wave - boundary layer interaction in oxyhydrogen mixture, International Journal of Hydrogen Energy 38, 4185-4193.
    [36] M.F. Ivanov, A.D. Kiverin, I.S. Yakovenko and M.A. Liberman (2013), Hydrogen–oxygen flame acceleration and deflagration-to-detonation transition in three-dimensional rectangular channels with no-slip walls, International Journal of Hydrogen Energy 38, 16427-16440.
    [37] V.I. Manzhalei, V.V. Mitrofanov and V.A. Subbotin (1974). Measurement of inhomogeneities of a detonation front in gas mixtures at elevated pressures, Shock Waves 10(1), 89-95.
    [38] K. Malik, M. Zbikowski and A. Teodorcyk (2019), Detonation cell size model based on deep neural network for hydrogen, methane and propane mixtures with air and oxygen, Nuclear Engineeding and Technology 51, 424-431.
    [39] A. Makris, T.J. Oh, J.H.S. Lee and R. Knystautas (1994), Critical Diameter for the Transmission of a Detonation Wave into a Porous Medium, Symposium (International) on Combustion 25(1), 65-71.
    [40] C.M. Guirao, R. Knystautas, J. Lee, W. Benedick and M. Berman (1982), Hydrogen-air detonations, Symposium (International) on Combustion 19, 583-590.
    [41] R. Knystautas, C. Guirao, J.H. Lee and A. Sulmistras (1984), Measurement of cell size in hydrocarbon-air mixtures and predictions of critical tube diameter, critical initiation energy, and detonability limits, In Prog. Astronaut. Aeronaut. 94, 23-37.
    [42] M.H. Wu and C.Y. Wang (2011), Reaction Propagation Modes in Millimeter-Scale Tubes for Ethylene/Oxygen Mixtures, Proceedings of the Combustion Institute 33, 2287-2293.
    [43] S.M. Frolov and B.E. Gel’fand (1991), Limit diameter of gas detonation propagation in tubes, Shock Waves 27(1), 113-117.
    [44] O. Peraldi, R. Knystautas and J.H. Lee (1988), Criteria for Transition to Detonation in Tubes, Symposium (International) on Combustion 21(1), 1629-1637.
    [45] B. Zhang (2016), The influence of wall roughness on detonation limits in hydrogen–oxygen mixture, Combustion and Flame 169, 333-339.
    [46] L. Wang, H. Ma, Z. Shen, B. Xue, Y. Cheng and Z. Fan (2017), Experimental investigation of methane-oxygen detonation propagation in tubes, Applied Thermal Engineering 123, 1300-1307.
    [47] B. Zhang, X. Shen, L. Pang and Y. Gao (2016), Methane–oxygen detonation characteristics near their propagation limits in ducts, Fuel 177, 1-7.
    [48] Z. Pan, K. Chen, J. pan, P. Zhang, Y. Zhu and J. Qi (2017), An experimental study of the propagation characteristics for a detonation wave of ethylene/oxygen in narrow gaps, Experimental Thermal and Fluid Science 88, 354-360.
    [49] Z.H. Wang, L. Yang, B. Li, Z.S. Li, M. Alden, K.F. Cen and A.A. Konnov, (2012), Investigation of combustion enhancement by ozone additive in CH4/air flames using direct laminar burning velocity measurements and kinetic simulations, Combustion and Flame 159, 120-129.
    [50] W. Weng, E. Nilsson, A. Ehn, J. Zhu, Y. Zhou, Z. Wang, Z. Li, M. Alden and K. Cen, Investigation of formaldehyde enhancement by ozone addition in CH4/air premixed flames, Combustion and Flame 162, 1284-1293.
    [51] T. Nomaguchi and S. Koda (1988), Spark ignition of methane and methanol in ozonized air, Symposium (International) on Combustion 22(1), 1677–1682.
    [52] F. Halter, P. Higelin and P. Dagaut (2011), Experimental and Detailed Kinetic Modeling Study of the Effect of Ozone on the Combustion of Methane, Energy & fuels 25, 2909-2916.
    [53] T.M. Vu, S.H. Won, T. Ombrello and M.S. Cha (2014), Stability enhancement of ozone-assisted laminar premixed Bunsen flames in nitrogen co-flow, Combustion and Flame 161, 917-926.
    [54] A.A. Konnov, A. Mohammad, V.R. Kishore, N.I. Kim, C. Prathap and S. Kumar (2018), A comprehensive review of measurements and data analysis of laminar burning velocities for various fuel + air mixtures, Combustion and Flame 68, 197-267.
    [55] X. Liang, Z. Wang, W. Weng, Z. Zhou, Z. Huang, J. Zhou and K. Cen (2013), Study of ozone-enhanced combustion in H2/CO/N2/air premixed flames by laminar burning velocity measurements and kinetic modeling, Hydrogen Energy 38, 1177-1188.
    [56] T. Ombrello, S.H. Won, Y. Ju and S. Williams (2010), Flame propagation enhancement by plasma excitation of oxygen. Part I: Effects of O3, Combustion and Flame 157, 1906-1915.
    [57] F. Foucher, P. Higelin, C. Mounaim-Rousselle and P. Dagaut (2013), Influence of ozone on the combustion of n-heptane in a HCCI engine, Proceedings of the Combustion Institute 34, 3005-3012.
    [58] T. Nomaguchi and S. Koda (1988), Spark ignition of methane and methanol on ozonized air, Symposium (International) on Combustion 22(1), 1677-1682.
    [59] X. Gao, Y. Zhang, S. Adusumilli, J. Seitzman, W. Sun, T. Ombrello and C. Carter (2015), The effect of ozone addition on laminar flame speed, Combustion and Flame 162, 3914-3924.
    [60] A.C. Rousso, N. Hansen, A.W. Jasper and Y. Ju (2018), Low-Temperature Oxidation of Ethylene by Ozone in a Jet-Stirred Reactor, Physical Chemistry 122, 8674-8685.
    [61] H. Zhao, X. Yang and Y. Ju, (2016), Kinetic studies of ozone assisted low temperature oxidation of dimethyl ether in a flow reactor using molecular-beam mass spectrometry, Combustion and Flame 173, 187-194.
    [62] U. Maas, B. Raffel, J. Wolfrum and J. Warnatz (1986), Observation and simulation of laser induced ignition processes in O2-O3 and H2-O2 mixtures, Symposium International on Combustion 21(1), 1869-1876.
    [63] J. Crane, X. Shi, A.V. Singh, Y. Tao and Hai Wang (2019), Isolating the effect of induction length on detonation structure: Hydrogen–oxygen detonation promoted by ozone, Combustion and Flame 200, 44-52.
    [64] 郭維鈞,微槽內爆震焰通過二維突擴之傳遞特性,國立成功大學碩士論文,2011。
    [65] M.H. Wu and W.C. Kuo (2013), Accelerative expansion and DDT of stoichiometric ethylene/oxygen flame rings in micro-gaps, Proceedings of the Combustion Institute 34, 2017-2024.
    [66] X. Shen, X. Yang, J. Santner, J. Sun and Y. Ju (2015), Experimental and kinetic studies of acetylene flames at elevated pressures, Proceeings of the Combustion Institute 35, 721-728.

    下載圖示 校內:2025-01-20公開
    校外:2025-01-20公開
    QR CODE