| 研究生: |
吳沛芸 Wu, Pei-Yun |
|---|---|
| 論文名稱: |
近斷層環境噪訊與斷層錯動之關聯分析 Relationship between fault slip to the ambient noise from near fault zone stations |
| 指導教授: |
余騰鐸
Yu, Teng-To |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 噪訊 、單站法 、共振主頻 |
| 外文關鍵詞: | ambient noise, HVSR, resonance frequency |
| 相關次數: | 點閱:106 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
環境噪訊是經由大自然及人為作用所產生的能量造成波動,於地表附近的地層中不停來回震盪疊加所形成的訊號,地底構造的不同會使波產生不同的物理現象反映在不同頻率。台灣地質構造複雜、地底應力作用頻繁,當地底應力作用改變造成地底構造受擠壓或拉扯,進而造成斷層兩側位移速率改變時,可能會使噪訊於某段頻率有所改變。
本研究取用2007年中央氣象局於BATS地震網設立的6個寬頻地震測站之連續資料,分別使用功率譜密度量化噪訊強度與單站法分析,將研究分為兩部分。第一部分為比較近斷層測站與遠斷層測站之訊號強度受到斷層影響程度之差異;此部分研究結果顯示 (1) 0-2 Hz之噪訊主要受到氣象因素影響;(2) 當小區域地震發生且震源與三個近斷層測站連線與斷層走向趨近平行時,斷層所造成之場址效應只明顯出現在近斷層測站的5 Hz噪訊中;(3) 2.5-4.5 Hz及5.5-25 Hz噪訊因受到文明噪訊影響,於六個測站中無相同特徵出現。第二部分以單站法分析,並且選取縱谷斷層北部及中部的兩組GPS測站,計算平行斷層之位移量,觀察斷層位移方向改變時對噪訊主頻之影響;此部分研究結果顯示 (1)於小尺度下 (以週為單位) 無法觀察到斷層位移方向改變與噪訊主頻變動 (上升或下降) 之關係;(2) 於較大尺度 (兩週以上趨勢) 測站FULB之噪訊在長時間 (1-3個月) 斷層位移方向未改變後突然發生位移方向改變之情況下,其噪訊主頻會產生立即的波動,但在擾動結束後ㄧ週內便回復原狀;(3) 於較大尺度下測站ENLB之噪訊於斷層位移方向連續改變時,主頻會有下降的情況發生;(4) 平行斷層之位移對噪訊的影響有距離的限制,超過7.5公里便沒有關連訊號。本研究以小範圍區域在長短不同的時間內,對於斷層活動激烈的東台灣偵測環境噪訊的變異與斷層活動性為非經常性的正相關。
Fault is one of the discontinuities geological structure. At different underground structure may have different site effect show within the seismic wave. The purpose of this research is to find the relationship between small scale fault slip to the variation of ambient noise in eastern Taiwan.
There is two sections within this study. First section is to find the differences of the ambient noise at near and far fault stations. It shows that (1) 0-2 Hz noise effects mainly controlled by meteorological factors; (2) Site effect may obviously response to 5 Hz noise when local earthquake wave arrives at a small incident angle relative to the strike of the fault; (3) Noise of 2.5-4.5 Hz & 5.5-25 Hz is associated with anthropogenic activity, therefore, the noise dose not demonstrate the same characteristic pattern within the six stations. Second section is using HVSR method to analyze the impact of resonance frequency when fault slip direction changed. This section shows that (1) there is no relationship between the fault slip direction change to the resonance frequency under small time scale (in weeks); (2) To a larger time scale (more than two weeks), the resonance frequency at the station FULB would fluctuate immediately when the fault slip direction changed sudden after a long time stable period (1-3 months); (3) To a larger scale, the resonance frequency at the station ENLB would drop down when the fault slip direction changed continuously; (4) The effect of ambient noise only found at limited distance for displacement parallel to the fault.
李知穎(2012),臺灣地區周遭環境地動噪訊的涵義與應用,國立成功大學地球科學研究所碩士論文。
林士棋(2006),利用微地動量測探討台北盆地之場址效應,國立中央大學地球物理研究所碩士論文。
林朝棨(1962),花蓮地方的第四系─台灣之第四紀研究三,第21-30頁,國家長期發展科學會報告。
涂嘉勝(2005),利用微地動量測探討台灣中部地區之場址效應,國立中央大學地球物理研究所碩士論文。
徐鐵良(1956),台灣東部海岸山脈地質,台灣省地質調查所彙刊第八號,共64頁。
陳佳彰(2005),利用微地動探討桃竹苗地區之場址效應,國立中央大學地球物理研究所碩士論文。
楊貴三(1986),台灣活斷層的地形學研究,特論活斷層與地形面的關係,文化大學地學研究所博士論文,共178頁。
Aster, R. C., McNamara, D. E., & Bromirski, P. D. (2008). Multidecadal climate-induced variability in microseisms. Seismol. Res. Lett., 79(2), 194-202.
Beauduin, R., Lognonne, P., Montagner, J. P., Cacho, S., Karczewski, J. F., & Morand, M. (1996). The effects of the atmospheric pressure changes on seismic signals or how to improve the quality of a station. Bull. Seismol. Soc. Am., 86(6), 1760–1769.
Borcherdt, R. D. (1970). Effects of local geology on ground motion near San Francisco Bay, Bull. Seismol. Soc. Am., 97(1B), 339-346.
Bromirski, P. D., & Kossin, J. P. (2008). Increasing hurricane wave power along the U.S. Atlantic and Gulf coasts, J. Geophys. Res., 113, C07012.
Cooley, J. W., & Tukey, J. W. (1965). An Algorithm for the Machine Calculation of Complex Fourier Series. Math. comput., 19, 90, 297-301.
Custodio, S., Dias, N. A., Caldeira, B., Carrilho, F., Carvalho, S., Corela, C., Diaz, J., Narciso, J., Madureira, G., Matias, L., Haberland, C., & WILAS Team (2014). Ambient Noise Recorded by a Dense Broadband Seismic Deployment in Western Iberia. Bull. Seismol. Soc. Am., 104, 6, 2985-3007.
McNamara, D. E., & Buland, R. P. (2004). Ambient Noise Levels in the Continental United States. Bull. Seismol. Soc. Am., 94, 4, 1517-1527.
Hillers, G. & Ben-Zion, Y. (2011). Seasonal variations of observed noise amplitudes at 2-18 Hz in southern California. Geophys. J. Int., 184, 860-868.
Hsu, L., Finnegan, N. J., & Brodsky, E. E. (2011). A seismic signature of river bedload transport during storm events. Geophys. Res. Lett., 38, L13407.
Kanai, K. (1962). On the spectrum of strong earthquake motions. Bull. Earthq. Res. Inst., 40, 71-90.
Lermo, J., & Chavez-Garcia, F. J. (1993). Site effect evaluation using spectral ratios with only one station. Bull. Seismol. Soc. Am., 83(5), 1574-1594.
Liang, W. T., Huang, B. S., Liu, C. C., & Kao, H. (2003). Broadband Array in Taiwan for Seismology (BATS) : The currentstatus and future development. 2003 FDSN Meeting.
Liang, W. T., Kao, H., & Liu, C.C. (2002). The current status of the Broadband Array in Taiwan for Seismology (BATS). IRIS Annual Meeting.
Lombardo, G., & Rigano, R. (2006). Amplification of ground motion in fault and fracture zones: Observations from the Tremestieri fault, Mt. Etna (Italy). J. Volcanol. Geoth. Res., 153(3-4), 167-176.
Lombardo, G., & Rigano, R. (2007). Local seismic response in Catania (Italy): A test area in the northern part of the town. Eng. Geol., 94(1-2), 38-49.
Moisidi, M., Vallianatos, F., Soupios, P., & Kershaw, S. (2012). Spatial spectral variations of microtremors and electrical resistivity tomography surveys for fault determination in southwestern Crete, Greece. J. Geophys. Eng., 9(3), 261-270.
Nakamura, Y. (1989). A method for dynamic characteristies estimation of subsurface using microtremor on the ground surface. QR of RTRI, 30, no.1, February, 25-33.
Nakamura, Y. (1996). Real Time Information Systems for Seismic Hazards Mitigation UrEDAS, HERAS and PIC. QR of RTRI, 37, 3, 112-127.
Peterson, J. (1993). Observation and modeling of seismic background noise. U.S. Geol. Surv. Tech. Rept., 93-322.
Puglia, R., Ditommaso, R., Pacor, F., Mucciarelli, M., Luzi, L., & Bianca, M. (2011). Frequency variation in site response as observed from strong motion data of the L’Aquila (2009) seismic sequence. B. Earthq. Eng., 9(3), 869-892.
Steidl, J. H., Tumarkin, A. G., & Archuleta, R. J. (1996). What is a reference site? Bull. seismol. Soc. Am., 86, 6, 1733-1748.
Wilson, D., Leon, J., Aster, R., Ni, J., Schlue, J., Grand, S., Semken, S., Baldridge, S., & Gao, W. (2002). Broadband Seismic Background Noise at Temporary Seismic Stations Observed on a Regional Scale in the Southwestern United States. Bull. Seismol. Soc. Am., 92(8), 3335-3341.
Withers, M. M., Aster, R. C., Young, C. J., & Chael, E. P. (1996). High frequency analysis of seismic background noise as a function of wind speed and shallow depth. Bull. Seism. Soc. Am., 86, 5, 1507-1515.
Wu, C., & Peng, Z. (2011). Temporal changes of site response during the 2011 Mw 9.0 off the Pacific coast of Tohoku Earthquake. Earth. Plants. Space., 63(7), 791-795.
Wu, C., Peng, Z., & Ben-Zion, Y. (2009). Non-linearity and temporal changes of fault zone site response associated with strong ground motion. Geophys. J. Int., 176(1), 265-278.
Wu, C. S., Yu, T. T., & Peng, W. F. (2013). Analysis of site response variation resulting from fault movement: Observations from the Chelungpu fault in Taiwan, Paper presented at the EGU General Assembly Conference Abstracts.
Yu, S. B., & Kuo, L. C. (2001). Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan. Tectonophysics, 333, 199-217.
Yu, T.T., Wu, C.S. & Cheng, Y.S. (2014). Detecting changes in long-period site responses after the Mw 7.6 Chi-Chi earthquake, Taiwan, using strong motion records. Earthq. Eng. & Eng. Vib., 14:217-228.
Zurn, W., & Widmer, R. (1995). On noise-reduction in vertical seismic records below 2 mHz using local barometric-pressure. Geophys. Res. Lett., 22, 24, 3537-3540.