簡易檢索 / 詳目顯示

研究生: 陳惟晟
Chen, Wei-Cheng
論文名稱: 環境水中兩類常見臭味物質調查及臭氧處理效果分析
Investigation of Two Types Common Odor Compounds in Environmental Water and Evaluation of the Effectiveness of Ozone Treatment
指導教授: 林財富
Lin, Tsair-Fuh
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 150
中文關鍵詞: 揮發性含硫化合物(VOSCs)丙二醇甲醚乙酸酯 (PGMEA)2,6-二丁基對甲酚 (BHT)氣相層析質譜儀(GC/MSD)固相微萃取(SPME)強制選擇嗅覺閾值分析法(FCM)初嗅數法(TON)嗅覺層次分析法(FPA)臭氧處理
外文關鍵詞: Volatile organic sulfur compounds, VOSCs, Propylene glycol monomethyl ether acetate, PGMEA, 2,6-ditert-butyl-4-methylphenol, BHT, Gas chromatography-mass spectrometry, GC/MSD, Ozone
相關次數: 點閱:53下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的進步和生活水平的提升,公眾對飲用水質量的要求日益提高。聯合國在2016年公佈的17項可持續發展目標(Sustainable Development Goals, SDGs)中,明確指出水和衛生(Water and Sanitation)是未來主要發展和關注的重點。然而,由於工業和生活污水的排放,水體中經常出現惡臭問題,這導致民眾對飲用水及環境水體的信心逐漸減少。
    為探討飲用水源及天然水體中異臭味的問題,本研究建立環境水中兩類常見臭味物質之定量方法,並進一步利用臭氧處理對其去除效果。研究中首先選定目標物質包括揮發性含硫化合物(VOSCs)(二甲基硫(DMS)、二甲基二硫(DMDS)、二甲基三硫(DMTS)及二硫化碳(CS2))、及工業化學品(丙二醇甲醚乙酸酯(PGMEA)和2,6-二丁基對甲酚(BHT))。透過氣相層析質譜儀(GC/MSD)搭配固相微萃取(SPME)結合建立臭味物質定性及定量的方法,同時利用感官評價法以研究水中氣味特徵,包括使用強制選擇嗅覺閾值分析法(FCM)找出目標物質之嗅覺閾值,並使用初嗅數法(TON)及嗅覺層次分析法(FPA)分析水樣中臭味的強度及特徵,同時從儀器及人體角度,主客觀探討及評估異臭味問題。
    本研究採樣區域包含臺南運河、鹽水月津港、路竹淨水廠和草屯鳥嘴潭。採樣分析結果顯示,DMS及CS2為出現頻率最高之物質,DMDS及DMTS則是於6月的臺南運河採樣時有檢測到,BHT則是有在少部分水樣中發現。其中濃度有超過該物質之嗅覺閾值的有DMS及DMTS(描述為腐爛蔬菜味)。然而FPA分析結果顯示在DMS及DMTS濃度超過其嗅覺閾值的樣品中,只有路竹淨水廠混凝池及沉澱池樣品的主要味道認定為腐爛蔬菜味。
    批次實驗結果顯示,臭氧具有降解水中DMS的效果,然而,若於臺南運河原水中使用臭氧進行處理會導致整體臭味強度及臭味特徵的改變,且降解效率會根據有效接觸因子(f_v)而改變,可作為提供反應槽設計參考的重要參數。

    This study investigates two common odor compounds in environmental water and evaluates the effectiveness of ozone treatment in removing these compounds. The target compounds include volatile organic sulfur compounds (VOSCs) such as dimethyl sulfide (DMS), dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS), carbon disulfide (CS2), as well as industrial chemicals like propylene glycol monomethyl ether acetate (PGMEA) and 2, 6-ditert-butyl-4-methylphenol (BHT). Analytical methods combining gas chromatography-mass spectrometry (GC/MSD) and solid-phase microextraction (SPME) were developed to quantify these compounds. Additionally, sensory evaluation methods, including forced-choice odor threshold determination and flavor profile analysis (FPA), were used to assess odor characteristics in water samples.
    The sampling analysis results show that DMS and CS2 were the most frequently detected substances in the studied water bodies, while DMDS and DMTS were detected during the June sampling of the Tainan Canal, and BHT was found in a few water samples. Among these, DMS and DMTS had concentrations that exceeded their respective odor thresholds (described as having a rotten vegetable smell). However, the FPA analysis results indicated that among the samples where DMS and DMTS concentrations exceeded their odor thresholds, only the samples from the coagulation and sedimentation processes at the Luzhu Water Treatment Plant were primarily identified as having a rotten vegetable odor. In addition, ozone was found to effectively degrades DMS, but treatment can alter the overall odor intensity and characteristics in water, with efficiency varying based on contact factors.

    摘要 i Extended Abstract iii 目錄 ix 圖目錄 xiii 表目錄 xv 1 第一章 緒論 1 1-1 研究源起 1 1-2 研究目的 2 2 第二章 文獻回顧 3 2-1 水中臭味分類 3 2-1-1 含硫臭味物質 6 2-1-2 丙二醇甲醚乙酸酯(PGMEA) 10 2-1-3 2, 6-二丁基對甲酚(BHT) 10 2-2 臭味物質化學分析法 12 2-2-1 固相微萃取法(Solid-phase microextraction, SPME) 12 2-2-2 氣相層析質譜儀(Gas Chromatography Mass Spectrometry, GC/MS) 13 2-2-3 質譜儀游離法 14 2-3 臭味物質的官能評價法 17 2-3-1 初嗅數法(Threshold Odor Number, TON) 17 2-3-2 嗅覺層次分析法(Flavor Profile Analysis, FPA) 18 2-3-3 強制選擇嗅覺閾值分析法(Determination of Odor and Taste Threshold by Forced-Choice Ascending Concentration Series Method of Limit, FCM) 21 2-3-4 其他官能評價法 21 2-4 臭味物質處理方式 23 2-4-1 活性碳吸附 23 2-4-2 化學氧化 25 2-4-3 高級氧化技術(Advanced oxidation processes, AOPs) 29 2-5 研究場址 36 2-5-1 臺南運河 36 2-5-2 月津港 36 2-5-3 鳥嘴潭及路竹淨水廠 37 2-6 其他地區水體含研究目標物之案例 37 2-6-1 太湖,中國無錫 37 2-6-2 林斯利池塘,美國康乃狄克州 38 2-6-3 薩林河,西班牙加利西亞自治區 39 3 第三章 實驗設備與方法 40 3-1 實驗架構及流程 40 3-2 臭味物質化學分析方法 42 3-2-1 實驗試劑 42 3-2-2 實驗設備 43 3-2-3 實驗方法 43 3-3 臭味物質官能評價法:強制選擇臭味閾值分析法(FCM) 46 3-3-1 實驗試劑 46 3-3-2 實驗設備 46 3-3-3 實驗方法 46 3-4 臭味物質官能評價法:初嗅數法 48 3-4-1 實驗設備 48 3-4-2 實驗方法 48 3-5 臭味物質官能評價法:嗅覺層次分析法 48 3-5-1 實驗試劑 48 3-5-2 實驗設備 49 3-5-3 實驗方法 49 3-6 臭氧氧化還原競爭實驗 51 3-6-1 實驗設備 52 3-6-2 實驗試劑 52 3-6-3 實驗方法 53 3-7 4-氯-2-甲氧基苯酚定量 54 3-7-1 實驗試劑 54 3-7-2 實驗設備 54 3-7-3 實驗方法 54 3-8 臭氧批次實驗 56 3-8-1 實驗試劑 56 3-8-2 實驗設備 56 3-8-3 實驗方法 56 4 第四章 結果與討論 58 4-1 臭味閾值及化學分析方法建立 58 4-1-1 嗅覺閾值測定 58 4-1-2 化學分析方法- GC/CIMS和GC/EIMS 62 4-2 環境樣品分析 68 4-2-1 臺南運河 68 4-2-2 月津港 84 4-2-3 鳥嘴潭 101 4-2-4 路竹淨水廠 106 4-2-5 回收率分析 111 4-3 臭氧對臭味物質反應動力及效果評估 112 4-3-1 臭氧對DMS之氧化反應 112 4-3-2 臭氧對DMTS之氧化反應 114 4-3-3 其他化合物與臭氧之反應動力 116 4-3-4 臭氧及DMS之批次實驗 116 5 第五章 結論與建議 122 5-1 結論 122 5-2 建議 124 6 參考文獻 125

    Alder, L., Greulich, K., Kempe, G., & Vieth, B. (2006). Residue analysis of 500 high priority pesticides: better by GC–MS or LC–MS/MS? Mass spectrometry reviews, 25(6), 838-865.
    Alvares, A., Diaper, C., & Parsons, S. (2001). Partial oxidation by ozone to remove recalcitrance from wastewaters-a review. Environmental Technology, 22(4), 409-427.
    Andreae, M., & Jaeschke, W. (1992). Exchange of sulphur between biosphere and atmosphere over temperate and tropical regions. Sulphur cycling on the continents: Wetlands, Terrestrial Ecosystems, and Associated Water Bodies. SCOPE, 48, 27-61.
    Andreae, M. O. (1986). The ocean as a source of atmospheric sulfur compounds. In The role of air-sea exchange in geochemical cycling (pp. 331-362). Springer.
    Bak, F., Finster, K., & Rothfuß, F. (1992). Formation of dimethylsulfide and methanethiol from methoxylated aromatic compounds and inorganic sulfide by newly isolated anaerobic bacteria. Archives of microbiology, 157, 529-534.
    Ballerino-Regan, D., & Longmire, A. W. (2010). Hydrogen sulfide exposure as a cause of sudden occupational death. Archives of pathology & laboratory medicine, 134(8), 1105-1105.
    Bartels, J. H., Brady, B. M., & Suffet, I. (1989). Taste and Odor in Drinking Water Supplies: Combined Final Report, Year 1 and 2, 1984-1986. AWWA Research Foundation.
    Benitez, F. J., Beltrán-Heredia, J., Acero, J. L., & Rubio, F. J. (2000). Rate constants for the reactions of ozone with chlorophenols in aqueous solutions. Journal of hazardous materials, 79(3), 271-285.
    Bocci, V., & Bocci, V. (2011). Physical-chemical properties of ozone–natural production of ozone: the toxicology of ozone. OZONE: A new medical drug, 1-4.
    Burlingame, G. (2009). A practical framework using odor survey data to prioritize nuisance odors. Water Science and Technology, 59(3), 595-602.
    Burlingame, G., Suffet, I., Khiari, D., & Bruchet, A. (2004). Development of an odor wheel classification scheme for wastewater. Water Science and Technology, 49(9), 201-209.
    Challenger, F., Bywood, R., Thomas, P., & Hayward, B. J. (1957). Studies on biological methylation. XVII. The natural occurrence and chemical reactions of some thetins. Archives of Biochemistry and Biophysics, 69, 514-523.
    Chen, Y.-T., Chen, W.-R., & Lin, T.-F. (2018). Oxidation of cyanobacterial neurotoxin beta-N-methylamino-L-alanine (BMAA) with chlorine, permanganate, ozone, hydrogen peroxide and hydroxyl radical. Water research, 142, 187-195.
    Cincotta, F., Verzera, A., Tripodi, G., & Condurso, C. (2018). Volatile emerging contaminants in melon fruits, analysed by HS-SPME-GC-MS. Food Additives & Contaminants: Part A, 35(3), 512-518.
    de Fátima Alpendurada, M. (2000). Solid-phase microextraction: a promising technique for sample preparation in environmental analysis. Journal of Chromatography A, 889(1-2), 3-14.
    DeMartino, A. W., Zigler, D. F., Fukuto, J. M., & Ford, P. C. (2017). Carbon disulfide. Just toxic or also bioregulatory and/or therapeutic? Chemical Society Reviews, 46(1), 21-39.
    Du, C., Liu, B., Hu, J., & Li, H. (2021). Determination of iodine number of activated carbon by the method of ultraviolet–visible spectroscopy. Materials Letters, 285, 129137.
    Du, W., & Parker, W. J. (2009). Modeling the conversion and fate of sulfur containing compounds in mesophilic anaerobic digestion. Residuals and Biosolids Conference 2009,
    Foundation, A. R., & Rashash, D. M. (1996). Identification and control of odorous algal metabolites. American Water Works Association.
    Glaze, W. H. (1987). Drinking-water treatment with ozone. Environmental science & technology, 21(3), 224-230.
    Harrison, A. G. (2018). Chemical ionization mass spectrometry. Routledge.
    Hu, H., Mylon, S. E., & Benoit, G. (2006). Distribution of the thiols glutathione and 3‐mercaptopropionic acid in Connecticut lakes. Limnology and oceanography, 51(6), 2763-2774.
    Hu, H., Mylon, S. E., & Benoit, G. (2007). Volatile organic sulfur compounds in a stratified lake. Chemosphere, 67(5), 911-919.
    Huang, X., Lu, Q., Hao, H., Wei, Q., Shi, B., Yu, J., Wang, C., & Wang, Y. (2019). Evaluation of the treatability of various odor compounds by powdered activated carbon. Water research, 156, 414-424.
    Huber, M. M., Canonica, S., Park, G.-Y., & Von Gunten, U. (2003). Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environmental science & technology, 37(5), 1016-1024.
    Hutchinson, G. E. (1957). Geography and physics of lakes. (No Title).
    Jiang, G., Melder, D., Keller, J., & Yuan, Z. (2017). Odor emissions from domestic wastewater: A review. Critical reviews in environmental science and technology, 47(17), 1581-1611.
    Jorge, T. F., Rodrigues, J. A., Caldana, C., Schmidt, R., van Dongen, J. T., Thomas‐Oates, J., & António, C. (2016). Mass spectrometry‐based plant metabolomics: Metabolite responses to abiotic stress. Mass spectrometry reviews, 35(5), 620-649.
    Lebrero, R., Bouchy, L., Stuetz, R., & Munoz, R. (2011). Odor assessment and management in wastewater treatment plants: a review. Critical reviews in environmental science and technology, 41(10), 915-950.
    Ma, Z., Xie, P., Chen, J., Niu, Y., Tao, M., Qi, M., Zhang, W., & Deng, X. (2013). Microcystis blooms influencing volatile organic compounds concentrations in Lake Taihu. Fresenius Environ. Bull, 22(1), 95-102.
    Mark, T. (1982). Fundamental aspects of electron impact ionization. International Journal of Mass Spectrometry and Ion Physics, 45, 125-145.
    Miklos, D. B., Remy, C., Jekel, M., Linden, K. G., Drewes, J. E., & Hübner, U. (2018). Evaluation of advanced oxidation processes for water and wastewater treatment–A critical review. Water research, 139, 118-131.
    Miller, R., Hermann, E., Young, J., Calhoun, L., & Kastl, P. (1984). Propylene glycol monomethyl ether acetate (PGMEA) metabolism, disposition, and short-term vapor inhalation toxicity studies. Toxicology and applied pharmacology, 75(3), 521-530.
    Ming, T. T., Hyun, K. T., & Myun, J. (2007). Characterization of livestock wastewater at various stages of wastewater treatment plant. Malays. J. Anal. Sci, 11, 23-28.
    Moret, I., Gambaro, A., Piazza, R., Barbante, C., Andreoli, C., Corami, F., & Scarponi, G. (2000). The seasonal variations of dimethyl sulphide and carbon disulphide in surface waters of the Venice lagoon. Marine chemistry, 71(3-4), 283-295.
    Nieva‐Echevarría, B., Manzanos, M. J., Goicoechea, E., & Guillén, M. D. (2015). 2, 6‐Di‐tert‐butyl‐hydroxytoluene and its metabolites in foods. Comprehensive Reviews in Food Science and Food Safety, 14(1), 67-80.
    Obeidat, Y. (2021). The most common methods for breath acetone concentration detection: A review. IEEE Sensors Journal, 21(13), 14540-14558.
    Oleszkiewicz, A., Alizadeh, R., Altundag, A., Chen, B., Corrai, A., Fanari, R., Farhadi, M., Gupta, N., Habel, R., & Hudson, R. (2020). Global study of variability in olfactory sensitivity. Behavioral Neuroscience, 134(5), 394.
    Oturan, M. A., & Aaron, J.-J. (2014). Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Critical reviews in environmental science and technology, 44(23), 2577-2641.
    Pawliszyn, J. (2012). Theory of solid-phase microextraction. In Handbook of solid phase microextraction (pp. 13-59). Elsevier.
    Pochiraju, S. S., Hoppe-Jones, C., Adams, C., & Weinrich, L. (2021). Development and optimization of analytical methods for the detection of 18 taste and odor compounds in drinking water utilities. Water research X, 11, 100099.
    Popalisky, J., Pogge, F., & McMurtrey, D. (1975). Analytical Instrumentation: A Tool for Solving Taste and Odor Problems in Water Treatment. AWWA Ann. Conf., Atlanta, Ga.(Dec. 1975),
    Qiu, C., Yuan, S., Li, X., Wang, H., Bakheet, B., Komarneni, S., & Wang, Y. (2014). Investigation of the synergistic effects for p-nitrophenol mineralization by a combined process of ozonation and electrolysis using a boron-doped diamond anode. Journal of hazardous materials, 280, 644-653.
    Rappert, S., & Müller, R. (2005). Microbial degradation of selected odorous substances. Waste management, 25(9), 940-954.
    Rice, E. W., Bridgewater, L., & Association, A. P. H. (2012). Standard methods for the examination of water and wastewater (Vol. 10). American public health association Washington, DC.
    Richardson, D. B. (1995). Respiratory effects of chronic hydrogen sulfide exposure. American journal of industrial medicine, 28(1), 99-108.
    Rodil, R., Quintana, J. B., Basaglia, G., Pietrogrande, M. C., & Cela, R. (2010). Determination of synthetic phenolic antioxidants and their metabolites in water samples by downscaled solid-phase extraction, silylation and gas chromatography–mass spectrometry. Journal of Chromatography A, 1217(41), 6428-6435.
    Ruth, J. H. (1986). Odor thresholds and irritation levels of several chemical substances: a review. American Industrial Hygiene Association Journal, 47(3), A-142-A-151.
    Shen, Q., Zhou, Q., Shang, J., Shao, S., Zhang, L., & Fan, C. (2014). Beyond hypoxia: occurrence and characteristics of black blooms due to the decomposition of the submerged plant Potamogeton crispus in a shallow lake. Journal of Environmental Sciences, 26(2), 281-288.
    Singer, P. C., & Reckhow, D. A. (1999). Chemical oxidation. Water quality and treatment, 5, 12.11-12.46.
    Staehelin, J., Buehler, R., & Hoigné, J. (1984). Ozone decomposition in water studied by pulse radiolysis. 2. Hydroxyl and hydrogen tetroxide (HO4) as chain intermediates. The Journal of Physical Chemistry, 88(24), 5999-6004.
    Suffet, I. (1987). Identification and treatment of tastes and odors in drinking water. American Water Works Association.
    Suffet, I., Burlingame, G., Rosenfeld, P., & Bruchet, A. (2004). The value of an odor-quality-wheel classification scheme for wastewater treatment plants. Water Science and Technology, 50(4), 25-32.
    Suffet, I., Schweitze, L., & Khiari, D. (2004). Olfactory and chemical analysis of taste and odor episodes in drinking water supplies. Reviews in Environmental Science and Biotechnology, 3, 3-13.
    Suffet, I. H., Brenner, L., & Cairo, P. R. (1980). GC/MS identification of trace organics in Philadelphia drinking waters during a 2-year period. Water research, 14(7), 853-867.
    Suffet, I. M., Khiari, D., & Bruchet, A. (1999). The drinking water taste and odor wheel for the millennium: beyond geosmin and 2-methylisoborneol. Water Science and Technology, 40(6), 1-13.
    Taylor, B. F., & Kiene, R. P. (1989). Microbial metabolism of dimethyl sulfide. In. ACS Publications.
    Taylor, W., Losee, R. F., Torobin, M., Izaguirre, G., Sass, D., Khiari, D., & Atasi, K. (2006). Early warning and management of surface water taste-and-odor events.
    Tu, X., Chen, S., Wang, S., Liao, H., & Deng, X. (2020). Pollution status of volatile organic sulfur compounds causing odor in Xi River and factors influencing spatial distribution. Water Supply, 20(4), 1264-1270.
    Von Gunten, U. (2003). Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water research, 37(7), 1443-1467.
    Wang, D., Xing, Y., Li, J., Dong, F., Cheng, H., He, Z., Wang, L., Giannakis, S., Song, S., & Ma, J. (2023). Degradation of odor compounds in drinking water by ozone and ozone-based advanced oxidation processes: A review. ACS ES&T Water, 3(11), 3452-3473.
    Wang, W., & Kannan, K. (2018). Inventory, loading and discharge of synthetic phenolic antioxidants and their metabolites in wastewater treatment plants. Water research, 129, 413-418.
    Watson, S. B., & Jüttner, F. (2017). Malodorous volatile organic sulfur compounds: Sources, sinks and significance in inland waters. Critical reviews in microbiology, 43(2), 210-237.
    Wu, J., Muruganandham, M., Chang, L., & Chen, S. (2008). Oxidation of propylene glycol methyl ether acetate using ozone-based advanced oxidation processes. Ozone: Science and Engineering, 30(5), 332-338.
    Xu, X., Liu, A., Hu, S., Ares, I., Martínez-Larrañaga, M.-R., Wang, X., Martínez, M., Anadón, A., & Martínez, M.-A. (2021). Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. Food Chemistry, 353, 129488.
    Yamamoto, T., Inagaki, M., & Kazuma, Y. (2009). Influence of antioxidative hindered phenols on the taste of beverages in the presence of free chlorine. Food science and technology research, 15(5), 491-498.
    Yang, J.-C., Chang, P.-E., Ho, C.-C., & Wu, C.-F. (2019). Application of factor and cluster analyses to determine source–receptor relationships of industrial volatile organic odor species in a dual-optical sensing system. Atmospheric Measurement Techniques, 12(10), 5347-5362.
    Yang, M., Yu, J., Li, Z., Guo, Z., Burch, M., & Lin, T.-F. (2008). Taihu Lake not to blame for Wuxi's woes. Science, 319(5860), 158-158.
    Zhang, X.-j., Chen, C., Ding, J.-q., Hou, A., Li, Y., Niu, Z.-b., Su, X.-y., Xu, Y.-j., & Laws, E. A. (2010). The 2007 water crisis in Wuxi, China: analysis of the origin. Journal of hazardous materials, 182(1-3), 130-135.
    王亘, 翟增秀, 耿静, 韩萌, & 鲁富蕾. (2015). 40 种典型恶臭物质嗅阈值测定. 安全与环境学报, 15(6), 348-351.
    朱盈蓁. (2012). 河川中二種常見惡臭味物質監測及移除之研究 國立成功大學環境工程研究所.
    何玉琦. (2004). 應用嗅覺與儀器方法分析水中臭味之研究 國立成功大學環境工程研究所.
    汪俊育. (2000). 南部地區代表性水源臭味問題之研究 國立成功大學環境工程研究所.
    周明顯. (2005). 環境臭味及控制. 科學發展(387), 38-43.
    洪旭文, & 林財富. (2000). 粉狀活性碳控制水中有機性臭味之探討. 自來水會刊, 第一十九卷(第四期), 14-37.
    胡, 汪., & 李, 雨. (2018). 曝气技术对城市黑臭水体的影响研究进展. Water pollution and treatment, 6, 165.
    翁玉芬, & 陳重男. (1992). 水中超微量異臭味物質 Geosmin 之分析及去除 國立成功大學環境工程研究所.
    國家環境研究院. (2005). 水中土霉味物質Geosmin及2-Methylisoborneol檢測方法-固相微萃取/頂空/氣相層析質譜儀法 (NIEA W537.51B).
    陳薏涵. (2010). 鹽水溪及二仁溪臭味特性研究-畜牧廢水及生活污水之影響 國立成功大學環境工程研究所.
    曾小磊, 蔡云龙, 陈国光, & 徐国勋. (2011). 臭味感官分析法在饮用水测定中的应用. 给水排水, 37(3), 14-18.
    楊敏, & 于建偉等人. (2021). 飲用水嗅味問題 : 來源與控制. 科學出版社.
    溫, 正. (2023). 台南安平運河整治30年仍飄臭 南市府:攔截汙水明年改善. 公視新聞網.
    經濟部水利署中區水資源分署鳥嘴潭人工湖計畫網站. 鳥嘴潭人工湖.
    廖寶琦, 何國榮, 陳玉如, 王亦生, 陳逸然, 曾美郡, 黃友利, 賴建成, 彭文平, 何彥鵬, 許邦弘, 李福安, 陳朝榮, 林俊利, 陳頌方, 李茂榮, 謝建台, 卓群恭, 丁望賢, . . . 卓怡孜. (2015). 質譜分析技術原理與應用. 台灣質譜學會.
    臺南市政府. (2018). 鹽水區月津港水環境改善計畫. 經濟部
    臺南市政府. (2019). 【運河水環境改善計畫】 整體計畫工作計畫書.
    劉浚明, & 楊景彥. (2014). 活性炭濾心器之穩健設計. 品質學報, 21(5), 329-348.
    潘芊伃. (2023). 台南運河中常見含硫臭味物質分析及光催化氧化處理之研究 國立成功大學環境工程研究所.
    鄭如涵. (2012). 混凝對天然有機物 (NOM) 去除之研究 國立成功大學環境工程研究所.
    環署檢. (2004). 環境檢驗方法偵測極限測定指引.
    蘇胤瑋. (2023). 紫外光及高級氧化程序對水中兩種常見 Anabaenopeptin 的降解研究 國立成功大學環境工程研究所.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE