簡易檢索 / 詳目顯示

研究生: 鄭存閔
Cheng, Chun-Min
論文名稱: 平面視覺質感輔助色彩知覺障礙者之辨識
The Composition of Visual Texture Design on Surface for Color Vision Deficiency
指導教授: 吳豐光
Wu, Fong-Gong
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 工業設計學系
Department of Industrial Design
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 72
中文關鍵詞: 色彩視覺色彩知覺障礙質感辨識心理物理學色彩閾值
外文關鍵詞: color vision, color vision deficiency, texture composition, psychophysics, color threshold
相關次數: 點閱:168下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   色彩知覺障礙者(color vision deficiency, 簡稱CVD)對於某些特定色彩容易混淆甚至喪失色覺,全球約有8%男性及0.4~0.5%女性患有不同程度及類型的色彩知覺障礙。但色彩為生活中資訊傳達的重要媒介,因此,若無法正確辨識色彩可能為生活帶來諸多不便甚至構成威脅。
      本實驗目的為利用質感具有區分不同表面的特性,又能完整傳達色彩圖示內容的優勢,以色彩視覺原理及視覺理論為發展基礎,提出質感構成的原則,以輔助色彩知覺障礙者之辨識,並兼顧一般視覺者的觀感。
      本研究採用心理物理學法,以紅色RGB (255, 0, 0)為質感背景,並先將質感解構後依據理論進行操作型定義。實驗首先藉由調整法測定色彩閾值,比較一般色覺者和色彩知覺障礙者對於特定色彩配色的辨識力。再利用定值刺激法,請受測者進行質感構成的辨識任務。最後,以一般色覺者的主觀評量從中評選出不影響觀看的質感構成。
      研究結果顯示,於紅色背景上的質感單元色彩若設定為RGB (234, 0, 21)、大小2.5'、間距2.5',可快速被色彩知覺障礙者察覺,且不影響一般色覺者的觀感;而單元大小1.67'、間距 5'則可應用於無須快速閱讀的資訊。設計師可依據載體觀看距離及用途,將此參數進行倍數調整,未來可進行不同載體材質特性的研究,歸納出一套針對各種情境的質感設計法則,以供設計師檢索利用。

      Color serves as a nonlinguistic code that gives us instant information about the world around us, but there are 8% of males and 0.4~0.5% of females suffer from different levels of color vision deficiency (CVD). It may cause much inconvenience as well as serious security problems in the daily lives.
      Based on color vision and visual perception theories, this study aimed to create a set of texture composition principles that not only supports a person with CVD to distinguish colors, but also maintains the visibility and aesthetic of the target.
      The study defined the texture background as redRGB (255, 0, 0). After the operational definition, a focus on the independent variable of texture color, elements size, and distance was possible.The preliminary experiment is color threshold measurement through the adjustment method of psychophysics; second, the constant stimuli method was employed to measure the visible texture compositions by CVDs and normal color vision (NCV) people; and third, NCVs were asked to subjectively evaluate the influence level by Likert scale so that the best texture composition principle could be created from the results.
      Depending on the purpose and position of the application, designers can decide which compositions benefit viewers. For being detected immediately by CVDs, the proper parameters on a red background are the texture elements with RGB (234, 0, 21) color, size 2.5', and distance 2.5'. For website designs or commercial advertisements, designers can choose a smaller size 1.67' and distance 5', so CVDs can easily read the information without a lack of aesthetics for NCVs.

    CONTENTS 摘要 II ABSTRACT III ACKNOWLEDGEMENT IV LIST OF TABLES VII LIST OF FIGURES VIII APPENDIX IX CHAPTER 1INTRODUCTION 1 1.1BACKGROUND AND MOTIVATION 1 1.2OBJECTIVES 5 1.3LIMITATION 7 1.4ORGANIZATION 8 CHAPTER 2LITERATURE REVIEW 9 2.1HUMAN COLOR VISION 9 2.2COLOR VISION DEFICIENCY 11 2.2.1Type of CVD 12 2.2.2Tests for CVD 16 2.2.3Related researches and tools of supporting CVD 17 2.2.4Summary 20 2.3FEATURE- INTEGRATION THEORY 21 2.4TEXTURE 22 2.5VISUAL PERCEPTION THEORIES 23 2.5.1Visual acuity 23 2.5.2Spatial frequency 24 2.5.3Summary 25 CHAPTER 3METHODS 26 3.1PSYCHOPHYSICS 28 3.2OPERATIONAL DEFINITION OF TEXTURE FACTORS 29 3.3COLOR THRESHOLD MEASUREMENT 31 3.4DISCRIMINATION TEST OF TEXTURE COMPOSITION 37 3.5EVALUATION OF TEXTURE COMPOSITIONS FOR NCV 41 CHAPTER 4RESULTS 45 4.1THE RESULTS OF TEXTURE DISCRIMINATION 45 4.1.1The texture discrimination rate of CVDs and NCVs 45 4.1.2Response time of texture composition 46 4.1.3The interaction effect of color vision, size and distance 49 4.2THE RESULTS OF TEXTURE EVALUATION FOR NCV 52 4.2.1Subjective evaluation 52 4.2.2Cluster analysis 54 CHAPTER 5DISCUSSION AND CONCLUSIONS 57 5.1DISCUSSION 57 5.1.1Color threshold measurement 57 5.1.2Discrimination test of the texture composition 58 5.1.3Texture evaluation for NCV 59 5.2CONCLUSIONS 63 REFERENCES 64 CHINESE REFERENCES 68   LIST OF TABLES Table 1.1 Contents of daily life tasks 2 Table 1.2 Contents of occupation 3 Table 1.3 Analysis of CVD impact level on three parts of everyday tasks 4 Table 2.1 Classification of CVD types 15 Table 2.2 Related Researches and Tools to Support CVD 20 Table 3.1 Texture operational definition 30 Table 3.2 Sequence of tasks 33 Table 3.3 Independent-Sample t-test about the color threshold of CVD and NCV 35 Table 3.4 Conversion of Visual Acuity 37 Table 3.5 Stimuli factors 38 Table 3.6 16 types of texture composition 38 Table 4.1 Descriptive Statistics for discrimination rate 45 Table 4.2 Descriptive Statistics for response time of CVDs 47 Table 4.3 Descriptive Statistics for response time of NCVs 47 Table 4.4 Results of Repeated Measure ANOVA for 3 factors 49 Table 4.5 CVDs’ RT result for Repeated Measure ANOVA in 2 factors 50 Table 4.6 Simple main effect of RT 51 Table 4.7 Descriptive Statistics in subjective evaluation of 16 textures 52 Table 4.8 Influences of two variables in three clusters 55 Table 4.9 Proper texture compositions for supporting CVD 56 Table 4.10 Repeated Measure ANOVA of cluster2 56 LIST OF FIGURES Figure 1.1 Research framework 8 Figure 2.1 Minimal separable visual angle 24 Figure 3.1 Experiment framework 27 Figure 3.2 Texture segregation 29 Figure 3.3 Evaluation frame of program 33 Figure 3.4 Evaluation process of color threshold measurement. 34 Figure 3.5 Experimental process 34 Figure 3.6 Results of threshold measurement 35 Figure 3.7 Histogram of color threshold 36 Figure 3.8 Interface of E-Prime software 40 Figure 3.9 Sequence in a trial 40 Figure 3.10 Evaluation process of discrimination test 41 Figure 3.11 Arrangement for experimental area 42 Figure 3.12 Experiment program frame. 43 Figure 3.13 Evaluation process of 16 textures 43 Figure 3.14 Experimental process 44 Figure 4.1 Bar chart of discrimination rates for CVDs and NCVs 46 Figure 4.2 Profile plot of 16 Textures 48 Figure 4.3 Simple Scatter Plot of 16 textures 53 Figure 4.4 Dendrogram 54 Figure 4.5 Simple Scatter Plot of 16 textures with the results of cluster analysis 55 Figure 5.1 Simulation of texture applied in website information 61 Figure 5.2 Simulation of texture applied in computer game 62 APPENDIX Appendix 1 Questionnaire of CVD in Everyday Tasks 69 Appendix 2 Color Threshold Measurement 71 Appendix 3 Evaluation of Texture Compositions 72

    REFERENCES
    Birch, J. (1993). Diagnosis of defective colour vision. Oxford University Press, New York.
    Blostein, D. & Ahuja, N. (1989). Shape from texture: Integrating texture-element extraction and surface estimation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 11(12),1233-1251.
    Bruno, T. J.& Svoronos, P. D. N. (2006). CRC handbook of fundamental spectroscopic correlation charts.CRC.
    Buckley, D., Frisby, J. P.& Blake, A. (1996). Does the human visual system implement an ideal observer theory of slant from texture? Vision Research, 36(8), 1163-1176.
    Chen, Y. C.& Liao, T. S. (2011). Hardware digital color enhancement for color vision deficiencies. ETRI Journal, 33(1).
    Childress, D. D. C. (2008). The power of color: Shades of meaning.ProQuest LLC, USA.
    CUDO. (2006). Color universaldesign handbook.CUDO, Japan
    Dain, S. J. (2004). Clinical colour vision tests. Clinical and Experimental Optometry,87(4‐5),276-293.
    Furbee, N. L., Maynard, K., Smith, J. J., Benfer Jr, R. A., Quick, S.& Ross, L. (1996). The emergence of color cognition from color perception. Journal of Linguistic Anthropology, 6(2), 223-240.
    Gündogan, N. Ü., Durmazlar, N., Gümüs, K., Özdemir, P. G., Altintas, A. G. Ü. L., Durur, I.& Acaroglu, G. (2005). Projected color slides as a method for mass screening test for color vision deficiency (a preliminary study). International journal of neuroscience, 115(8), 1105-1117.
    Galun, M., Sharon, E., Basri, R.& Brandt, A. (2003). Texture segmentation by multiscale aggregation of filter responses and shape elements.Proceedings of the Ninth IEEE International Conference on Computer Vision.
    Goldstein, E. B. (2010). Sensation and perception, 8th ed.Wadsworth Cengage Learning, Australia.
    Gregory, R. L.(1997). Eye and brain: The psychology of seeing.Princeton university press.
    Grove, L. K. (1991). Document design for the visually impaired.The ExpandingEnvironmentof TechnicalCommunication.
    Hugh J. Foley, Margaret W. Matlin. (2010). Sensation and perception, 5th ed. Allyn & Bacon. Boston, 204-205.
    Jacobs, D. M.& Díaz, A. (2010). Judgements of time to contact are affected by rate of appearance of visible texture. The Quarterly Journal of Experimental Psychology, 63(6),1041-1048.
    Jefferson, L.& Harvey, R. (2006). Accommodating color blind computer users. ProceedingAssets '06 Proceedings of the 8th international ACM SIGACCESS conference on Computers and accessibility, 40 - 47.
    Jefferson, L.& Harvey, R. (2007). An interface to support color blind computer users.CHI 2007 Proceedings-Color/Blind,USA.
    Jeong, J. Y., Kim, H. J., Kim, Y. H., Wang, T. S.& Ko, S. J. (2012). Enhanced Re-coloring Method with an Information Preserving Property for Color-Blind Person. Paper presented at the 2012 IEEE International Conference on Consumer Electronics (ICCE).
    Kim, Y. K., Kim, K. W.& Yang, X. (2007). Real time traffic light recognition system for color vision deficiencies, Proceedings of the 2007 IEEEInternational Conference on Mechatronics and Automation, China
    Linhares, J. M. M., Felgueiras, P. E. R., Pinto, P. D.& Nascimento, S. (2010). Colour rendering of indoor lighting with CIE illuminants and white LEDs for normal and colour deficient observers. Ophthalmic and Physiological Optics, 30(5),618-625.
    McDowell, J. (2008). Design of a color sensing system to aid the color blind. Potentials, IEEE, 27(4), 34-39.
    Motoyoshi, I. (2011). Attentional modulation of temporal contrast sensitivity in human vision. PloS one, 6(4), e19303.
    Mullen, K. T. (1985). The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings. The Journal of Physiology, 359(1), 381.
    Muttaqin, G. F.& Suwandi, I. S. (2011). Simulation system of color blind glasses by image processing. Electrical Engineering and Informatics (ICEEI).
    Neitz, M.& Neitz, J. (2011). Molecular genetics of color visionand color vision defects. Mechanisms of Ophthalmic Disease.
    O'Hare, L.& Hibbard, P. B. (2011). Spatial frequency and visual discomfort. Vision Research.
    Ochiai, T. (2008). LED road traffic signal light.EP Patent 1,973,088.
    Ofen, N., Moran, A.& Sagi, D. (2007). Effects of trial repetition in texture discrimination. Vision Research, 47(8), 1094-1102.
    Okabe, M., & Ito, K. (2008). Color Universal Design (CUD)-How to make figures and presentations that are friendly to Colorblind people. Depository for Drosophila Researchers.
    Poret, S., Dony, R.& Gregori, S. (2009). Image processing for colour blindness correction, TIC-STH 2009 IEEE
    Prinzmetal, W. (1981). Principles of feature integration in visual perception. Attention, Perception, & Psychophysics, 30(4), 330-340.
    Steven, H. S. (2010). Visual perception: aclinical orientation. McGraw-Hill Medical, New York, 6-9.
    Sacks, O. W. (1997). The island of the colorblind;and,Cycad island,Vintage Books, New York.
    Sharpe, L. T., de Luca, E., Hansen, T., Jägle, H. & Gegenfurtner, K. R. (2006). Advantages and disadvantages of human dichromacy. Journal of vision, 6(3).
    Simunovic, M. (2009). Colour vision deficiency. Eye, 24(5),747-755.
    Smith, V. C. & Pokorny, J. (2003). Color matching and color discrimination. The science of color, 2, 103-148.
    Stward, J. M. & Cole, B. L. (1989). What do color vision defectives say about everyday tasks? Optometry & Vision Science, 66(5),288.
    Szczesniak, A. S. (2002). Texture is a sensory property. Food Quality and Preference, 13(4), 215-225.
    Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive psychology, 12(1), 97-136.
    Valberg, A. (2005). Light vision color.John Wiley & Sons, Hoboken, NJ.
    Wachtler, T., Dohrmann, U. & Hertel, R. (2004). Modeling color percepts of dichromats. Vision Research, 44(24), 2843-2855.


    Chinese References
    Oyama, T. (1998)。色彩心理學-追隨牛頓和歌德的腳步。牧村圖書出版。台北。
    李江山、孫慶文、陳一平、陳建中、黃淑麗、黃榮村、葉素、襲充文& Sakurai, S. (1999)。視覺與認知─視覺知覺與視覺運動系統。遠流出版公司。台北。128-130。
    林智祥 (2009)。色彩之前進後退與膨脹收縮感之定量測量;碩士論文。國立交通大學應用藝術研究所。
    林昆範(2005)。色彩原論。全華圖書公司。台北。
    孟慶茂&常建華 (2000)。心理實驗學。心理出版社股份有限公司。台北。 82-97。
    高淑玲 (2004)。色彩認知和配色感覺之研究─以改變配色形狀和面積比對色彩意象影響為例。國立雲林科技大學視覺傳達研究所。
    陳一平 (2004)。應用色彩學研究;行政院國家科學委員會專題研究計畫。國立交通大學應用藝術研究所。
    陳一平 (2011)。視覺心理學。雙葉書廊。台北。
    郭明堂 (2003)。危險標誌用語及顏色之認知研究。嘉南藥理科技大學工業安全衛生系。
    黃鈺斯 (2010)。針對色彩知覺障礙者設計之新式三原色辨識系統;碩博士論文。成功大學工業設計學系。
    曾祥炎&陳軍 (2009)。E-Prime 實驗設計技術。暨南大學出版社。
    葉素玲&劉慧珠 (1997)。人類的型態視覺。科學月刊。

    下載圖示 校內:2017-08-21公開
    校外:2017-08-21公開
    QR CODE