| 研究生: |
史仲傑 Shih, Chung-Chieh |
|---|---|
| 論文名稱: |
不同電極材料對鐵酸鉍電阻式記憶體之電性影響及其切換機制探討 Electrical Characterization of the Electrode-Dependent Resistive Random Access Memory Based on BiFeO3 |
| 指導教授: |
莊文魁
Chuang, Wen-Kuei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 電阻式記憶體 、鐵酸鉍 、雙層介電層電阻式記憶體 、燈絲理論 、電化學金屬化機制 、化合價變化機制 |
| 外文關鍵詞: | resistive random access memory, BiFeO3, filament theory, electrochemical metallization mechanism, valence change mechanism |
| 相關次數: | 點閱:154 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著AI、大數據、5G時代等等革命性科技的來臨,對記憶體相關電子元件的需求量空前絕後,為了解決電子元件尺寸與製程技術的微縮困境,促使來自不同背景的工程師與科學家不斷提出創新、可行的解決方案,提供具有快速操作、低功耗以及高密度等等優點的記憶體元件,已然成為記憶體相關研究的重心。
本實驗使用磁控濺鍍與電子束蒸鍍等技術,製備了以鋁、銀、白金及氧化銦錫等材料作為電極之電阻式記憶體(ReRAM)元件,並以多鐵性材料鐵酸鉍(BiFeO3, BFO)為介電層,並藉由量測各個不同電極元件的電性,來觀察電極材料對元件特性之間的關係,結果顯示,製備的Ag/BFO/Pt以及Ag/BFO/ITO電阻式記憶體元件具備優秀且穩定的特性,其中又以Ag/BFO/ITO元件表現優異,超過1200次的操作次數以及優良(>102)且穩定的電流或電阻開關比(on/off ratio),高、低阻態的維持時間也輕易地達到104秒,除了比較各個元件電性以外,也進一步探究電阻的切換機制,其中分別以金屬離子遷移主導的電化學金屬化機制以及氧空缺傳導主導的化合價變化機制為探討重點,兩者皆與導電燈絲的建立、破壞密不可分,除了製備典型的金屬-絕緣層-金屬(MIM)三層結構之外,也製備了由鐵酸鉍與氧化鐵(α-Fe2O3)所組成的雙層介電層元件,上下電極則採用氧化銦錫及銀,並於量測結果發現具備特殊的「兩段式Reset」現象,並透過燈絲理論作出解釋,此結果展現了電阻式記憶體元件的在內存與神經形態計算方面的應用與發展潛力。
除了元件特性與電阻切換機制之外,透過對電流、電壓的線性擬合,確定在高、低阻態與不同施加電場下參與的電流傳導機制,例如歐姆傳導、空間電荷限制電流(SCLC)、穿隧傳導及其他等等機制。
關鍵字: 電阻式記憶體、鐵酸鉍、雙層介電層電阻式記憶體、燈絲理論、電化學金屬化機制、化合價變化機制
With the advent of revolutionary technologies such as AI, big data, and the 5G, the demand for memory-related electronic devices has never been greater, which has prompted engineers and scientists of various backgrounds to propose innovative and viable solutions to mitigate the technical bottleneck of scaling down the electronic devices and continuously improving the manufacturing process. Delivering memory devices with appealing features such as fast operation, low power consumption, and high density has forcefully occupy the center of memory research.
In this work, we use magnetron sputtering and electron beam evaporation techniques to fabricate resistive random access memory (ReRAM) with aluminum, silver, platinum, and indium tin oxide (ITO) electrodes and the multiferroic bismuth ferrite (BiFeO3 or BFO) as the active dielectric layer. By measuring the electrical properties of various devices with different electrodes, the interrelationship between the electrode materials and the ReRAM characteristics is investigated. The results evince that the prepared Ag/BFO/Pt and Ag/BFO/ITO ReRAM devices have reflected excellent and stable electrical properties, especially for the Ag/BFO/ITO device. The Ag/BFO/ITO device exhibit great endurance with more than 1200 switching cycles and an excellent (>102) on/off current or resistance ratio. The retention time in both high and low resistance states can comfortably reach 104 seconds and beyond. In addition to comparing the electrical properties of each device, the resistive switching mechanism is also further explored. We mainly focus on the electrochemical metallization mechanism dominated by metal ion migration and the valence change mechanism dominated by oxygen vacancy conduction. Both of which are inseparable from the establishment and destruction of the conductive filament. Moreover, we not only fabricated ReRAM devices with a typical MIM structure but also prepared a bilayer device with a double dielectric layer composed of bismuth ferrite stacked on iron oxide (α-Fe2O3). The indium tin oxide and silver are deposited as top and bottom electrodes. A special "two-step reset" phenomenon is observed from the measurement results of this bilayer device, which could be explained through the filament theory. The outcome of measurements manifests the potential for applying ReRAM devices in in-memory and neuromorphic computing.
In addition to the device characteristics and resistive switching mechanism, the current conduction mechanisms in high and low resistance states under different electric fields applied are ascertained through the linear fittings of current-voltage characteristics including ohmic conduction, space charge limited current (SCLC), tunnel conduction, and other mechanisms.
Keywords: resistive random access memory, BiFeO3, filament theory, electrochemical metallization mechanism, valence change mechanism
[1] 張于紳、STPI 科技政策研究組, “新需求爆發、記憶體動能強”, 經濟日報, 2018.
[2] F. Zahoor, T. Z. Azni Zulkifli, and F. A. Khanday, "Resistive random access memory (RRAM): an overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications," Nanoscale research letters, vol. 15, no. 1, pp. 1-26, 2020.
[3] T. C. Chang, K. C. Chang, T. M. Tsai, T. J. Chu, and S. M. Sze, “Resistance random access memory,” Materials Today, vol. 19. no 5, pp. 254-264, 2016
[4] C. H. Pan, K. C. Chang, T. C. Chang, T. M. Tsai, R. Zhang, S. P. Liang, and S. M. Sze, “Communication—Effects of oxygen concentration gradient on resistive switching behavior in oxygen vacancy-rich electrodes,” ECS Journal of Solid State Science and Technology, vol. 5, no 5, Q115, 2016
[5] H. S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, and M. J. Tsai,” Metal–oxide RRAM,” Proceedings of the IEEE, vol. 100, no 6, pp. 1951-1970, 2016.
[6] F. Yuan, S. Shen, Z. Zhang, L. Pan, and J. Xu, “Interface-induced two-step RESET for filament-based multi-level resistive memory,” Superlattices and Microstructures, vol. 91, pp. 90-97, 2016.
[7] H. Wang, X. Yan, “Overview of resistive random access memory (RRAM): Materials, filament mechanisms, performance optimization, and prospects,” physica status solidi (RRL)–Rapid Research Letters, vol. 13, no. 9, p. 1900073, 2019.
[8] L. Zhu, J. Zhou, Z. Guo, and Z. Sun, “An overview of materials issues in resistive random access memory”. Journal of Materiomics, vol. 1, no. 4, pp. 285-295, 2015.
[9] S. Slesazeck, T. Mikolajick, “Nanoscale resistive switching memory devices: a review,” Nanotechnology, vol. 30, no. 35, p. 352003, 2019.
[10] Z. Shen, C. Zhao, Y. Qi, W. Xu, Y. Liu, I. Z. Mitrovic, and C. Zhao, “Advances of RRAM devices: Resistive switching mechanisms, materials and bionic synaptic application,” Nanomaterials, vol. 10, no. 8, p. 1437, 2020.
[11] D. Ielmini, and H. S. P. Wong, “In-memory computing with resistive switching devices,” Nature electronics, vol. 1, no. 6, pp. 333-343, 2018.
[12] S. Park, H. Kim, M. Choo, J. Noh, A. Sheri, S. Jung, and H. Hwang, “RRAM-based synapse for neuromorphic system with pattern recognition function,” In 2012 international electron devices meeting, IEEE, pp. 10-2, Dec, 2012.
[13] S. Yu, “Overview of resistive switching memory (RRAM) switching mechanism and device modeling,” In 2014 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2017-2020, Jun, 2014.
[14] H. Y. Chen, S. Yu, B. Gao, P. Huang, J. Kang, and H. S. P. Wong, “HfOx based vertical resistive random access memory for cost-effective 3D cross-point architecture without cell selector,” In 2012 International Electron Devices Meeting, IEEE, pp. 20-7, Dec, 2012.
[15] N. Raghavan, K. I. Pey, W. Liu, X. Wu, X. Li, and M. Bosman, “Evidence for compliance controlled oxygen vacancy and metal filament based resistive switching mechanisms in RRAM,” Microelectronic Engineering, vol. 88, no. 7, pp. 1124-1128, 2011.
[16] 徐文芝, ”挑戰創意與物理極限 -- 非揮發性記憶體的過去與未來”, 北美智權報, RD專欄, 2015.
[17] D. Kahng, and S. M. Sze, “A floating gate and its application to memory devices,” The Bell System Technical Journal, vol. 46, no. 6, pp. 1288-1295, 1967.
[18] S. Kawashima, and J. S. Cross, “FeRAM,” In Embedded Memories for Nano-Scale VLSIs, pp. 279-328, Springer, Boston, MA, 2009.
[19] H. S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, and K. E. Goodson, “Phase change memory,” Proceedings of the IEEE, vol. 98, no. 12, pp. 2201-2227, 2010.
[20] D. Apalkov, B. Dieny, and J. M. Slaughter, “Magnetoresistive random access memory,” Proceedings of the IEEE, vol. 104, no. 10, pp. 1796-1830, 2016.
[21] Y. C. Tseng, and K. M. Chen, “磁性材料及元件應用技術-磁阻記憶體近期發展與挑戰Magnetic Materials & Related Technological Applications-Recent Development And Challenge Of Magneto-Resistive Random Access Memory,” 科儀新知, vol. 228. Pp. 8-19. 2021.
[22] S. Munjal, and N. Khare, “Advances in resistive switching based memory devices,” Journal of Physics D: Applied Physics, vol. 52, no. 43, p. 433002, 2019.
[23] C. Wang, B. Song, and Z. Zeng, “Excellent selector performance in engineered Ag/ZrO2: Ag/Pt structure for high-density bipolar RRAM applications,” AIP Advances, vol. 7, no. 12, p. 125209, 2017.
[24] S. J. Wu, F. Wang, Z. C. Zhang, Y. Li, Y. M. Han, Z. C. Yang, and K. L. Zhang, “High uniformity and forming-free ZnO-based transparent RRAM with HfOx inserting layer,” Chinese Physics B, vol. 27, no. 8, p. 087701, 2018.
[25] B. Hudec, I. T. Wang, W. L. Lai, C. C. Chang, P. Jančovič, K. Fröhlich, M. Mičušík, M. Omastová, and T. H. Hou, “Interface engineered HfO2-based 3D vertical ReRAM,” Journal of Physics D: Applied Physics, vol. 49, no. 21, p. 215102, 2016.
[26] A. Sawa, “Resistive switching in transition metal oxides,” Materials today, vol. 11, no. 6, pp. 28-36, 2008.
[27] S. Larentis, C. Cagli, F. Nardi, and D. Ielmini, “Filament diffusion model for simulating reset and retention processes in RRAM,” Microelectronic Engineering, vol. 88, no. 7, pp. 1119-1123, 2011.
[28] E. W. Lim, and R. Ismail, “Conduction mechanism of valence change resistive switching memory: a survey,” Electronics, vol. 4, no. 3, pp. 586-613, 2015.
[29] F. C. Chiu, “A review on conduction mechanisms in dielectric films,” Advances in Materials Science and Engineering, 2014.
[30] A. J. Moulson, and J. M. Herbert, “Electroceramics: materials, properties, applications,” John Wiley & Sons, 2003.
[31] N. Wang, X. Luo, L. Han, Z. Zhang, R. Zhang, H. Olin, and Y. Yang, “Structure, performance, and application of BiFeO3 nanomaterials,” Nano-Micro Letters, vol. 12, no. 1, pp. 1-23, 2020.
[32] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liud. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, And R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” science, vol. 299, no. 5613, pp. 1719-1722, 2003.
[33] J. H. Lee, M. A. Oak, H. J. Choi, J. Y. Son, and H. M. Jang, “Rhombohedral–orthorhombic morphotropic phase boundary in BiFeO3-based multiferroics: first-principles prediction,” Journal of Materials Chemistry, vol. 22, no. 4, pp. 1667-1672, 2012.
[34] H. Naganuma, “Multifunctional Characteristics of B-site Substituted BiFeO3 Films,” New York: Intech, pp. 373, 2011.
[35] T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin, and S. W. Cheong, “Switchable ferroelectric diode and photovoltaic effect in BiFeO3,” Science, vol. 324, no. 5923, pp. 63-66, 2009.
[36] S. Gupta, M. Tomar, and V. Gupta, “Ferroelectric photovoltaic response to structural transformations in doped BiFeO3 derivative thin films,” Materials & Design, vol. 105, pp. 296-300, 2016.
[37] C. Tablero, “An evaluation of BiFeO3 as a photovoltaic material,” Solar Energy Materials and Solar Cells, vol. 171, pp. 161-165, 2017.
[38] G. A. Gomez-Iriarte, A. Pentón-Madrigal, L. A. S. de Oliveira, and J. P. Sinnecker, “XPS Study in BiFeO3 Surface Modified by Argon Etching,” Materials, vol. 15, no. 12, pp. 4285, 2022.
[39] E. Djatoubai, M. S. Khan, S. ul Haq, P. Guo, and S. Shen, “BiFeO3 bandgap engineering by dopants and defects control for efficient photocatalytic water oxidation,” Applied Catalysis A: General, vol. 643, p. 118737, 2022.
[40] J. Wang, L. Luo, C. Han, R. Yun, X. Tang, Y. Zhu, Z. Nie, W. Zhao, and Z. Feng, “The Microstructure, electric, optical and photovoltaic properties of BiFeO3 thin films prepared by low temperature sol–gel method,” Materials, vol. 12, no. 9, p. 1444, 2019.
[41] A. D. Paul, S. Biswas, P. Das, H. J. Edwards, A. Dalal, S. Maji, V. R. Dhanak, and R. Mahapatra, “Improved resistive switching characteristics of Ag/Al: HfOx/ITO/PET ReRAM for flexible electronics application,” Semiconductor Science and Technology, vol. 36, no. 6, p. 065006, 2021.
[42] S. Munjal, and N. Khare, “Multilevel resistive and magnetization switching in Cu/CoFe2O4/Pt device: Coexistence of ionic and metallic conducting filaments,” Applied Physics Letters, vol. 113, no. 24, p. 243501, 2018.
[43] C. F. Chang, J. Y. Chen, C. W. Huang, C. H. Chiu, T. Y. Lin, P. H. Yeh, and W. W. Wu, “Direct Observation of Dual‐Filament Switching Behaviors in Ta2O5‐Based Memristors,” Small, vol. 13, no. 15, p. 1603116, 2017.
[44] T. S. Lee, N. J. Lee, H. Abbas, H. H. Lee, T. S. Yoon, and C. J. Kang, “Compliance current-controlled conducting filament formation in tantalum oxide-based RRAM devices with different top electrodes,” ACS Applied Electronic Materials, vol. 2, no. 4, pp. 1154-1161, 2020.
[45] M. C. Wu, Y. H. Ting, J. Y. Chen, and W. W. Wu, “Low power consumption nanofilamentary ECM and VCM cells in a single sidewall of high‐density VRRAM arrays.” Advanced Science, vol. 6, no. 24, p. 1902363, 2019.
[46] C. Kumari, I. Varun, S. P. Tiwari, and A. Dixit, “Interfacial layer assisted, forming free, and reliable bipolar resistive switching in solution processed BiFeO3 thin films,” AIP Advances, vol. 10, no. 2, p. 025110, 2020.
[47] S. W. Chen, and J. M. Wu, “Unipolar resistive switching behavior of BiFeO3 thin films prepared by chemical solution deposition,” Thin Solid Films, vol. 519, no. 1, pp. 499-504, 2010.
[48] B. Ku, Y. Abbas, A. S. Sokolov, and C. Choi, “Interface engineering of ALD HfO2-based RRAM with Ar plasma treatment for reliable and uniform switching behaviors,” Journal of Alloys and Compounds, vol. 735, pp. 1181-1188, 2018.
[49] H. Yang, H. Wang, G. F. Zou, M. Jain, N. A. Suvorova, D. M. Feldmann, P. C. Dowden, R. F. DePaula, J. L. MacManus-Driscoll, A. J. Taylor, Q. X. Jia, “Leakage mechanisms of self-assembled (BiFeO3)0.5:(Sm2O3)0.5 nanocomposite films,” Applied Physics Letters, vol. 93, no. 14, p. 142904, 2008.
[50] C. Kumari, I. Varun, S. P. Tiwari, and A. Dixit, “Robust non-volatile bipolar resistive switching in sol-gel derived BiFeO3 thin films,” Superlattices and Microstructures, vol. 120, pp. 67-74, 2018.
[51] L. Wu, J. Li, C. Liu, R. Zheng, J. Li, X. Wang, M. Li, and J. Wei, “Inkjet printed BiFeO3 thin films with non-volatile resistive switching behaviors,” Physics Letters A, vol. 404, p. 127406, 2021.
[52] R. K. Katiyar, Y. Sharma, D. G. Barrionuevo Diestra, P. Misra, S. Kooriyattil, S. P. Pavunny, S. P., G. Morell, B. R. Weiner, J. F. Scott, and R. S. Katiyar, “Unipolar resistive switching in planar Pt/BiFeO3/Pt structure,” AIP Advances, vol. 5, no. 3, pp. 037109, 2015.
[53] A. K. Jena, A. K. Sahoo, and J. Mohanty, “Effects of magnetic field on resistive switching in multiferroic based Ag/BiFeO3/FTO RRAM device,” Applied Physics Letters, vol. 116, no. 9, p. 092901, (2020).
[54] P. Zheng, B. Sun, Y. Chen, H. Elshekh, T. Yu, S. Mao, S. Zhu, H. Wang, Z. Yong, and Z. Yu, “Photo-induced negative differential resistance in a resistive switching memory device based on BiFeO3/ZnO heterojunctions,” Applied Materials Today, vol. 14, pp. 21-28, 2019.
校內:2027-09-07公開