簡易檢索 / 詳目顯示

研究生: 黃宥銓
HUANG, YOU-CHIUAN
論文名稱: 以衝擊流冷卻圓柱腔體內之熱板
Impinging jet cooling of a hot plate in a cylindrical chamber
指導教授: 王振源
Wang, Chen-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 106
中文關鍵詞: 快速熱處理衝擊流
外文關鍵詞: RTA, impinging jet
相關次數: 點閱:70下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以快速熱處理機台 (RTA) 來作數值熱傳模擬,
    模擬直徑300厘米之晶圓冷卻10秒後的過程。所模擬的腔體為圓柱腔體,腔壁的溫度為373K,在腔體底部放一溫度1300K、直徑300mm及厚度0.7mm的圓形熱板,並且在腔體的壁上分別設進氣口及出氣口。在冷卻過程中,以氮氣做為主要的冷卻氣體,吹入腔體的氣體溫度為常溫300K。對於整個流場以加入低雷諾數k - ε 紊流模式分析之,其捨棄了傳統的牆函數(Wall functions)法則,而引入如fμ、f1、f2及一些額外的近牆修正項,使得紊流模式可以直接延伸至壁上並使之能更準確的計算複雜流場。並探討衝擊流對熱板的影響且以不同入口速度,不同熱板轉速,來觀察對於熱板的變化。

    根據本文結論得知,衝擊流隨著雷諾數的值越高,熱板被帶走的熱量越多。多孔衝擊流比單一衝擊流有效地控制改善熱板均勻性。而增加熱板轉速後,多孔噴衝擊流經由熱板旋轉所帶動的氣流也能夠增加冷卻速率,並且大大改善熱板的溫度均勻性。在不同θ方向不同r位置的衝擊流冷卻效果比在固定徑向一排的衝擊流來得佳。且增加入口數目有助於均勻度的改善。

    In this work, we simulate the heat transfer phenomenon of the cooling process of a silicon wafer after 10 second in the Rapid Thermal Annealing.
    The initial temperature of the wafer whose thickness and diameter is 0.7mm and 300mm respectively is 1300K and be placed on the bottom of a cylindrical chamber where a gas inlet and outlet were set on.
    We use nitrogen gas to cool down the wafer gas and keep the inlet temperature of the nitrogen gas and the wall temp of chamber to be 300K and 373K.
    To simulate the flow field more exactly, we use the low - Reynolds number k -ε turbulence model to analyze the problem instead of using traditional wall function rule and introduced some modified variable such asfμ、f1、f2 to describe the phenomena near the walls.
    We consider the number of inlet, inlet velocity, rotating speed of wafer and inlet angle to investigate how the variables affect this
    problem.
    According to the results of simulation, the cooling effect of impinging jet is more better with the increasing of Renolds number value obviously .
    Multiple impinging jets can control to improve the uniformity of wafer temperture better then single jet, effectively.
    The flow induced by the rotating of the wafer can increase the cooling speed and the uniformity.
    Impinging jets in different θ and different r positions can improve the cooling effect.
    And adding the number of inlet also can improve the uniformity.

    中文摘要 ………...………………………………………………………I 英文摘要 ……………………………………………………………….II 誌謝 ……………………………………………………………………III 目錄 ……………………………………………………………………IV 表目錄 …………………………………………………………………VI 圖目錄 ………………………………………………………………...VII 符號表 ……………………………………………………………….XI 第一章 導論 1-1引言及研究動機………………………………...…………… 1 1-2文獻回顧 .…………………………………………………… 2 1-3本文概述………………...…………………………………… 3 第二章 理論分析與數學模式 …………………………………..5 2-1 基本假設 ………………………………………………….…5 2-2 統御方程式 .……………………………………………… ...6 2-3 紊流模式………………...……………………..….….………8 2-4 邊界條件 .…………………………………………………..11 2-5 熱性質 .……..…………………..…………………………..13 第三章 數值方法 ………………………………………………16 3-1 數值演算法………………………………………………….16 3-2 共軛熱傳…… .………………………………………………18 3-3 格點分布……………...……………………………….……. 19 3-4 內部格點的數值設定………………………………………..19 3-5 收斂標準……………………………….…………………….20 3-6 格點測試……………………………………………………..20 第四章 結果與討論 .…………………………………………… 21 4-1 Single Impinging Jet …………………………………………..21 4-2 多孔衝擊流 – 六孔衝擊流…………………………………24 4-2-1 固定θ方向不同r位置………………………………....…24 4-2-2 不同θ方向不同r位置…………………………….………28 4-3 不同位置的比較………………………………………………30 4-4 多孔衝擊流 – 十一孔衝擊流……………………………......30 第五章 結論與未來工作……... ….………………………………32 5-1 結論 ………………………………………………………...32 5-2 未來工作…………….. ………..………………………….…33 參考文獻…………………………………………………………..34 附錄…………………………………………………………………38

    Launder, B. E., and Spalding, D. B., 1974, ``The Numerical Computation of Turbulent Flow,' Computer Methods in Applied Mechanics and Engineering, Vol. 3, pp. 269-289.
    Lam, C. K. G., and Bremhorst, K. A., 1981, ``Modified Form of the k -εModel for Predicting Wall Turbulence,' ASME Journal of Fluids Engineering, Vol. 103, pp.456-460.
    Nagano, Y., and Tagawa, M., 1990, ``An Improved k - ε for Boundary Layer Flows,' ASME Journal of Fluids Engineering, Vol. 112, pp. 33-99.
    Wittig, S., and Scherer, V., 1987, ``Heat Transfer Measurement Downstream of
    a Two-Dimensional Jet Entering a Cross Flow,' ASME Journal of Turbomachinery, Vol. 109, pp.572-578.
    Elison, B., and Webb, B. W., 1994, ``Local Heat Transfer to Impinging Liquid Jets in the Initially Laminar, Transitional, and Turbulent Regimes,' International Journal of Heat and Mass Transfer, Vol. 37, No. 8, pp. 1207-1216.
    Womac, D. J., Ramadhyani, S., Incropera F. P., 1993, ``Correlating Equation for Impingement Cooling of Small Heat Source with Single Circular Liquid Jets,' ASME Journal of Fluids Engineering, Vol.115, pp. 106-115.
    Ambatipudi, K. K., and Muhammad, M. R., 2000, ``Analysis of Conjugate Heat Transfer in Microchannel Heat Sinks,' Numerical heat Transfer, Part A, Vol. 37, pp. 711-731.
    Rahman, M. M., Atonio, J. B., and Leland, J. E., 2000, ``Analysis of Transient Conjugate Heat Transfer to a Free Impinging Jet,' Journal of Thermophyscis and Heat Transfer, Vol. 14, No. 3.
    Wang, X. S., Dagan, Z., and Jili, L. M., 1989, ``Heat Transfer Between a Circular Free Impinging Jet and a Solid Surface with Non-Uniform Wall Temperature or Wall Heat Flux-1. Solution for the Stagnation Region,' International Journal of Heat and Mass Transfer}, Vol. 32, No. 7, pp. 1351-1360.
    Wang, X. S., Dagan, Z., and Jili, L. M., 1989, ``Heat Transfer Between a Circular Free Impinging Jet and a Solid Surface with Non-Uniform Wall Temperature or Wall Heat Flux-2. Solution for the Stagnation Region,' International Journal of Heat and Mass Transfer, Vol. 32, No. 7, pp. 1361-1371.
    Sherif, S. A., and Pletcher, R. H., 1989, ``Measurements of the Thermal Characteristics of Heated Turbulent Jets in Crossflow,' ASME Journal of Heat Transfer, Vol. 111, pp. 897-903.
    Evans, G. H., and Greif, R., 1988, ``Forced flow near a heated rotatng disk: A similarity solution,' Numerical Heat Transfer}, Vol. 14, pp. 373-389.
    Siba, E. A., Ganesa-Pillai, M., and HarrisA, K., 2003, ``Heat Transfer in a High Turbulence Air Jet Impinging Over a flat Circular Disk,' ASME Journal of Heat Transfer, Vol. 125, pp. 257-264.
    C. P. Yin, C. C. Hsiao, and T.F., Lin, 2000, ``Improvement in wafer temperature uniformity and flow pattern in a lamp heated rapid thermal processor,' Journal of Crystal Growth, Vol. 217, pp.201-210.
    Lee, M. L., and Liu, C. W., 2001, ``A novel illuminator design in a rapid thermal processor,' IEEE Transactions on Semiconductor Manufacturing, Vol. 14, No. 2, pp. 152-156.
    Launder, B. E., and Sharma, B. I.,1974, ``Application of the Engery-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc,' Letters in Heat and Mass Transfer, pp. 131-138.
    Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation.
    Touloukian, Y. S., Liely, P. E., and Saxena, S. C., 1970, Thermophysical Properties of Matter, vol. 3: Thermal Conductivity, Nonmetallic Liquids and Gases, IFI/Plenum, New York.
    Touloukian, Y. S., and Makita, J., 1970, Thermophysical Properties of Matter, vol. 6: Specific Heat, Nonmetallic Gases and Liquids, IFI/Plenum, New York.
    Touloukian, Y. S., Saxena, S. C., and Hestermasn, P., 1970, Thermophysical Properties of Matter, vol.11: Viscosity, IFI/Plenum, New York.
    Wilcox, D. C., 1993, Turbulence Modeling for CFD, DCW Industries, Inc.
    黃盟誠, 2003, 圓柱腔體內加一熱板的流場及溫度場,國立成功大學航空太空工程研究所.碩士論文.

    下載圖示 校內:2007-08-18公開
    校外:2007-08-18公開
    QR CODE