| 研究生: |
蕭智深 Hsiao, Chih-Shen |
|---|---|
| 論文名稱: |
二維音速不足膨脹噴流與漸縮空穴管交互作用之研究 Investigation of a Two-Dimensional Sonic Under Expanson Jet to Tappered Cavity Flow |
| 指導教授: |
尤芳忞
Yu, Fan-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 音速噴嘴 、空穴管 、不足膨脹噴流 |
| 外文關鍵詞: | sonic nozzle, cavity flow, under expansion jet, Hartmann-Sprenger Generator, H. S. Resonance Tube |
| 相關次數: | 點閱:61 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗探討二維音速不足膨脹噴流與空穴管正向交互作用下之流場行為,實驗設計上選擇管長,噴嘴至空穴管口的間距,噴流全壓比,空穴管漸縮比作為研究的參數來觀測管內壓力震盪的模式與底端溫度上升的關係。音速噴嘴與空穴管交互流場現象主要有吞吐模式與尖聲模式兩種,其模式主要取決於噴流全壓比大小與噴嘴至空穴管口的間距的長短,而在尖聲模式下穴管底有溫度迅速提昇的情形。研究結果發現其流場結構存在的模式由何者主導,主要跟噴流總壓比和穴管與噴嘴的距離有直接的關係,而界定模式的分際就是在於自由噴流出口時第一節震波發展的狀況有關。另外,漸縮比與管長還有穴管的幾何外型,在某些吹試條件下也有些微的影響。歸納出溫度提昇機制也是本實驗重點之ㄧ,高溫升的可能發操作條件為尖聲模式、間距比0.5時,此為本實驗中最高溫升之點,約為當時室溫的兩倍。
The behavior of the interaction of two-dimensional sonic under expansion jet to cavity flow has been investigated. In The testing parameters include length of the tube, distance between sonic nozzle outlet and cavity inlet, and the tapered ratio of the cavity. The pressure oscillation inside the cavity tube and temperature rising at the end of the cavity tube are being examined.The results show that for regurgitant mode and screech mode which is the mode that takes the major part in the flow field depend on the total pressure of the jet and distance between the cavity and sonic jet nozzle. The separation of the two modes was related to the jet stream development on its first cell of shock wave flow structure. Besides, the cavity length and tapered ratio also show slightly influence in some case. Since there always exist a mixed regurgitant mode and screech mode in the flow structure in current flow conditions, thus energy can not be accumulated at the cavity tube end thus the temperature can not raise dramatically.However, the results shows on some special operational parameters, on the cavity tube end wall can get a high temperature. One of which is the screech mode with a ratio of distance between sonic nozzle outlet and cavity inlet of 0.5. It is of with the highest temperature in the experiments.
[1] J. Hartmann, “On the Production of Acoustic Wave by Mean of an Air-Jet of a Velocity Exceeding That Sound,” Philosophical Magazine, Vol. 11, pp.926-948, 1931.
[2] L. E. Savory, “Experiments with the Hartmann Acoustic Generator,” Engineering, Vol.170, pp.99-100, pp.136-138, 1950.
[3] H. Sprenger, “Zurich Über Thermisch Effekkte in Resonanzohren,” Mitteilungen aus dem Institut fur Aerodynamik an der E. T. H., Vol. 21, pp.18-31, 1954.
[4] T. J. B. Smith, A. Powell, “Experiments concerning the Hartmann Whistle,” Rept.64-62, Department of Engineering, University of California, 1964.
[5] K. A. Morch, “A Theory for the Mode of Operation of the Hartmann air Jet Generator” ,Journal of Fluid Mechanics, Vol. 94, pp. 649-672, 1964
[6] L. D. Rozenberg, “Sources of High-Intensity Ultrasound,” Moscow Science Press, 1967.
[7] E. Brocher, C. Maressca and M. H. Bournay, “Fluid Dynamics of the Resonance Tube” Journal of Fluid Mechanics, Vol.43, pp.369-384, 1970.
[8] J. H. Wu, T. Ostrowski, R. A. Neemeh and P. H. W. Lee, “Experimental Investigation of a Cylindrical Resonantor,” American Institute of Aeronautics and Astronautics Journal, Vol.12, pp.1076-1078, 1974.
[9] M. Kawahashi and M. Suzuki, “Studies of Resonance Tube with a Secondary Resonantor,” Bulletin of the Japan Society of Mechanical Engineers, Vol.17, pp.595-602, 1974.
[10] J. Iwamoto, K. MO, I. Arga and I. Watanabe, “On Thermal Effects of Hartmann-Sprenger Tubes with Various Internal Geometries,” Oscillatory Flow in Ducts, Euromech 73, Aix-en-Preovence, 1976.
[11] J. H. Wu, T. Ostrowski and R. A. Neemeh, “Acoustic Performance of a Cylindricall Disk-Type Resonantor,” Journal of Sound and Vibration, Vol.60, pp.151-156, 1978.
[12] V. Sarohia and L. H. Back, “Experimental Investigation of Flow and Heating in a Resonance Tube,” Journal of Fluid Mechanics, Vol.94, pp.649-672, 1979.
[13] M. Kawahasha and M. Suzuki, “Generative Mechanism of Air Column Oscillation in a Hartmann-Sprenger Tube Excited by and Air-jet Issuing from a Convergent Nozzle,” Zeitschriften fur angewandte Mathematik und Physik, Vol.30, pp.797-810, 1979.
[14] M. Kawahasha and M. Suzuki, “Thermal Effect in a Hartmann-Sprenger Tube,” Bulletin of the Japan Society of Mechanical Engineers, Vol.22, pp.685-692, 1979.
[15] W. M. Jungowski and G. B. Sobieraj, “Hartmann-Sprenger Generator as a Sound Source of a Discrete Frequency,” Bulletin of the Static University of Mining and Metallurgy, Vol.728, pp.137-145, 1979.
[16] E. Brocher and G. Pinna, “Aeroacoustical Phennomena in a Horn excited by a Hartmann-Sprenger Tube,” Acoustica, Vol.45, pp.180-189, 1980.
[17] M. Kawahashi and M. Suzuki, “Temperature Separation Produced by a Hartmann-Sprenger Tube Coupling a Secondary Resonantor,” Journal of Heat and Mass Transfer, Vol.24, pp.1951-1958, 1981.
[18] M. Kawahashi, R. Bobone and E. Brocher, “Oscillation Modes in a Single-Step Hartmannn-Sprenger Tube,” Journal of the Acoustical Society of America, Vol.75, pp.780-784, 1984.
[19] R. A. Neemeh and P. P. Ostrowski, “Thermal Performance of Logarithmicspiral Resonance Tube,” American Institute of Aeronautics and Astronautics Journal, Vol.22, pp.1823-1825, 1984.
[20] W. M. Jungowski and G. E. A. Meier “Planar jets impinging on various obstacles and some modes oscillation,” Mitteilungen der Mas-Planck-Institut for Stromungsforschung, Vol.78, pp.347-353, 1984.
[21] W. M. Jungowski and G. Grabitz, “Selfsustained Oscillation of a Jet Impinging upon a Helmholt-Resonanto,r” Journal of Fluid Mechanics, Vol.1799, pp77-103, 1987.
[22] G. B. Sobeiraj and A. P. Szumowski, “Experimental Investigations of an Underexpanded Jet from a Convergent Nozzle Impinging on Cavity,” Journal of Sound and Vibration, Vol.149, No.3, pp.369-375, 1991.
[23] N. L. Messersmith and S.N.B. Murthy, “Gas Dynamics and Heat Transfer from Impinging Underexpanded Jet,” AIAA paper 4993-5018, 5th Inter. Aerospace Planes Conf., Munich, Germany, 1993
[24] L. Messersmith, “Aeroacoustic Resonace and Surface Heat Transfer From Underexpanded Impinging Jets,” AIAA paper 2994-3077, 1994
[25] 王昌楠, “Experimental Study on the Shock Oscillating in an Underexpanded Jet to Cavity Interaction Flow,” 國立成功大學航空太空工程研究所碩士論文, 1997.
[26] 郭伯翔, “Experimental Investigation of The Heat Transfer Characteristics In a Underexpanded Jet Induced Resonance Tube,” 國立成功大學航空太空工程研究所碩士論文, 1998.
[27] 施純榮, “Effect of Constant Height Throat Section on a Two-Dimensional Nozzle,”國立成功大學航空太空工程研究所碩士論文, 2000.
[28] 李秉勳, “Investigation of a Two-Dimensional Supersonic Under Expansion Jet to Tapered Cavity Flow,”國立成功大學航空太空工程研究所碩士論文, 2002.
[29] Maddox, A. R. and Binder, R. C., “A new dimension in Schlieren technique: Flow field analysis using color,” AIAA paper 70-223, 1970.
[30] Settles, G. S., “Modern Developments in flow visualization,” AIAA J., vol. 24, No. 8, pp. 1313-1323. , 1986.
[31] Goldstein, R. J., “Fluid Mechanics Measurements”, Second edition, Taylor & Francis publishers, University of Minnesota, pp. 451-474, 1996.
[32] Andrew Davidhazy, “Playing with mirrors at more than 500 pictures per second with your SLR camera,”. http://www.rit.edu/~andpph/text-high-speed-slr.html