簡易檢索 / 詳目顯示

研究生: 蕭智深
Hsiao, Chih-Shen
論文名稱: 二維音速不足膨脹噴流與漸縮空穴管交互作用之研究
Investigation of a Two-Dimensional Sonic Under Expanson Jet to Tappered Cavity Flow
指導教授: 尤芳忞
Yu, Fan-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 123
中文關鍵詞: 音速噴嘴空穴管不足膨脹噴流
外文關鍵詞: sonic nozzle, cavity flow, under expansion jet, Hartmann-Sprenger Generator, H. S. Resonance Tube
相關次數: 點閱:61下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗探討二維音速不足膨脹噴流與空穴管正向交互作用下之流場行為,實驗設計上選擇管長,噴嘴至空穴管口的間距,噴流全壓比,空穴管漸縮比作為研究的參數來觀測管內壓力震盪的模式與底端溫度上升的關係。音速噴嘴與空穴管交互流場現象主要有吞吐模式與尖聲模式兩種,其模式主要取決於噴流全壓比大小與噴嘴至空穴管口的間距的長短,而在尖聲模式下穴管底有溫度迅速提昇的情形。研究結果發現其流場結構存在的模式由何者主導,主要跟噴流總壓比和穴管與噴嘴的距離有直接的關係,而界定模式的分際就是在於自由噴流出口時第一節震波發展的狀況有關。另外,漸縮比與管長還有穴管的幾何外型,在某些吹試條件下也有些微的影響。歸納出溫度提昇機制也是本實驗重點之ㄧ,高溫升的可能發操作條件為尖聲模式、間距比0.5時,此為本實驗中最高溫升之點,約為當時室溫的兩倍。

    The behavior of the interaction of two-dimensional sonic under expansion jet to cavity flow has been investigated. In The testing parameters include length of the tube, distance between sonic nozzle outlet and cavity inlet, and the tapered ratio of the cavity. The pressure oscillation inside the cavity tube and temperature rising at the end of the cavity tube are being examined.The results show that for regurgitant mode and screech mode which is the mode that takes the major part in the flow field depend on the total pressure of the jet and distance between the cavity and sonic jet nozzle. The separation of the two modes was related to the jet stream development on its first cell of shock wave flow structure. Besides, the cavity length and tapered ratio also show slightly influence in some case. Since there always exist a mixed regurgitant mode and screech mode in the flow structure in current flow conditions, thus energy can not be accumulated at the cavity tube end thus the temperature can not raise dramatically.However, the results shows on some special operational parameters, on the cavity tube end wall can get a high temperature. One of which is the screech mode with a ratio of distance between sonic nozzle outlet and cavity inlet of 0.5. It is of with the highest temperature in the experiments.

    目錄 中文摘要......................................................................I 英文摘要.....................................................................II 致謝........................................................................III 目錄.........................................................................IV 表目錄.......................................................................VI 圖目錄.......................................................................VI 符號說明.....................................................................IX 第一章 序論...................................................................1 1.1 研究動機與目的..........................................................1 1.2 文獻回顧................................................................2 1.2.1 噴流與空穴管交互作用文獻回顧........................................2 1.2.2 視流方法簡介及文獻回顧..............................................4 第二章 理論分析...............................................................6 2.1自由噴流流場現象.........................................................6 2.2 噴流與空穴管交互作用之流場..............................................6 2.2.1 不穩定模式..........................................................7 2.2.2 吞吐模式............................................................7 2.2.3 尖聲模式............................................................8 2.2.4空穴管內壓力的震盪機構...............................................8 2.3 視流觀察理論基礎........................................................9 2.3.1影圖法...............................................................9 2.3.2單眼相機高速攝影法...................................................9 2.4移動平均法..............................................................11 第三章 實驗設備..............................................................12 3.1 高速噴流設備...........................................................12   3.1.1 高壓空氣給氣系統...................................................12   3.1.2 管線控制系統.......................................................12 3.1.3 穩壓整流室.........................................................13 3.1.4 噴嘴裝置...........................................................13 3.1.5 空穴管模型測試段...................................................13 3.1.6 數據蒐集系統.......................................................14 3.2 溫度計與壓力感測器.....................................................14 3.2.1 溫度感測器.........................................................14 3.2.2 動壓感測器.........................................................14 3.2.3 總壓壓力計.........................................................15 3.3光學儀器................................................................15 3.4 靜壓壓力計校驗與測試...................................................16 第四章 實驗方法與步驟........................................................17 4.1 實驗參數調整...........................................................17 4.2 數據資料量測...........................................................17 4.3 影圖法與單眼相機高速攝影法光路安排及拍攝步驟...........................18 第五章 結果與討論............................................................20 5.1 自由噴流流場...........................................................21 5.2 各組空穴管模型內部壓力的振盪狀.........................................21 5.2.1 各組模型與平均壓力間的係...........................................21 5.2.2 各組模型與壓力振幅間的關係.........................................23 5.2.3 各組模型與空穴管底端溫度變化的情形.................................23 5.2.4 各組模型頻譜分布情形...............................................25 5.2.5 各組模型視流照片分析...............................................31 第六章 結論與建議............................................................33 6.1結論....................................................................33 6.2 建議事項...............................................................34 參考文獻.....................................................................36 附表.........................................................................40 附圖.........................................................................48 附錄A 各測試模型組於不同操作條件下量測之壓力訊號、壓力訊號頻譜、溫度量測訊號與溫度訊號移動平均原始資料圖.........................................................92 附錄B 平均壓力、壓力振幅、主頻對間距比增加的關係圖................................105

    [1] J. Hartmann, “On the Production of Acoustic Wave by Mean of an Air-Jet of a Velocity Exceeding That Sound,” Philosophical Magazine, Vol. 11, pp.926-948, 1931.
    [2] L. E. Savory, “Experiments with the Hartmann Acoustic Generator,” Engineering, Vol.170, pp.99-100, pp.136-138, 1950.
    [3] H. Sprenger, “Zurich Über Thermisch Effekkte in Resonanzohren,” Mitteilungen aus dem Institut fur Aerodynamik an der E. T. H., Vol. 21, pp.18-31, 1954.
    [4] T. J. B. Smith, A. Powell, “Experiments concerning the Hartmann Whistle,” Rept.64-62, Department of Engineering, University of California, 1964.
    [5] K. A. Morch, “A Theory for the Mode of Operation of the Hartmann air Jet Generator” ,Journal of Fluid Mechanics, Vol. 94, pp. 649-672, 1964
    [6] L. D. Rozenberg, “Sources of High-Intensity Ultrasound,” Moscow Science Press, 1967.
    [7] E. Brocher, C. Maressca and M. H. Bournay, “Fluid Dynamics of the Resonance Tube” Journal of Fluid Mechanics, Vol.43, pp.369-384, 1970.
    [8] J. H. Wu, T. Ostrowski, R. A. Neemeh and P. H. W. Lee, “Experimental Investigation of a Cylindrical Resonantor,” American Institute of Aeronautics and Astronautics Journal, Vol.12, pp.1076-1078, 1974.
    [9] M. Kawahashi and M. Suzuki, “Studies of Resonance Tube with a Secondary Resonantor,” Bulletin of the Japan Society of Mechanical Engineers, Vol.17, pp.595-602, 1974.
    [10] J. Iwamoto, K. MO, I. Arga and I. Watanabe, “On Thermal Effects of Hartmann-Sprenger Tubes with Various Internal Geometries,” Oscillatory Flow in Ducts, Euromech 73, Aix-en-Preovence, 1976.
    [11] J. H. Wu, T. Ostrowski and R. A. Neemeh, “Acoustic Performance of a Cylindricall Disk-Type Resonantor,” Journal of Sound and Vibration, Vol.60, pp.151-156, 1978.
    [12] V. Sarohia and L. H. Back, “Experimental Investigation of Flow and Heating in a Resonance Tube,” Journal of Fluid Mechanics, Vol.94, pp.649-672, 1979.
    [13] M. Kawahasha and M. Suzuki, “Generative Mechanism of Air Column Oscillation in a Hartmann-Sprenger Tube Excited by and Air-jet Issuing from a Convergent Nozzle,” Zeitschriften fur angewandte Mathematik und Physik, Vol.30, pp.797-810, 1979.
    [14] M. Kawahasha and M. Suzuki, “Thermal Effect in a Hartmann-Sprenger Tube,” Bulletin of the Japan Society of Mechanical Engineers, Vol.22, pp.685-692, 1979.
    [15] W. M. Jungowski and G. B. Sobieraj, “Hartmann-Sprenger Generator as a Sound Source of a Discrete Frequency,” Bulletin of the Static University of Mining and Metallurgy, Vol.728, pp.137-145, 1979.
    [16] E. Brocher and G. Pinna, “Aeroacoustical Phennomena in a Horn excited by a Hartmann-Sprenger Tube,” Acoustica, Vol.45, pp.180-189, 1980.
    [17] M. Kawahashi and M. Suzuki, “Temperature Separation Produced by a Hartmann-Sprenger Tube Coupling a Secondary Resonantor,” Journal of Heat and Mass Transfer, Vol.24, pp.1951-1958, 1981.
    [18] M. Kawahashi, R. Bobone and E. Brocher, “Oscillation Modes in a Single-Step Hartmannn-Sprenger Tube,” Journal of the Acoustical Society of America, Vol.75, pp.780-784, 1984.
    [19] R. A. Neemeh and P. P. Ostrowski, “Thermal Performance of Logarithmicspiral Resonance Tube,” American Institute of Aeronautics and Astronautics Journal, Vol.22, pp.1823-1825, 1984.
    [20] W. M. Jungowski and G. E. A. Meier “Planar jets impinging on various obstacles and some modes oscillation,” Mitteilungen der Mas-Planck-Institut for Stromungsforschung, Vol.78, pp.347-353, 1984.
    [21] W. M. Jungowski and G. Grabitz, “Selfsustained Oscillation of a Jet Impinging upon a Helmholt-Resonanto,r” Journal of Fluid Mechanics, Vol.1799, pp77-103, 1987.
    [22] G. B. Sobeiraj and A. P. Szumowski, “Experimental Investigations of an Underexpanded Jet from a Convergent Nozzle Impinging on Cavity,” Journal of Sound and Vibration, Vol.149, No.3, pp.369-375, 1991.
    [23] N. L. Messersmith and S.N.B. Murthy, “Gas Dynamics and Heat Transfer from Impinging Underexpanded Jet,” AIAA paper 4993-5018, 5th Inter. Aerospace Planes Conf., Munich, Germany, 1993
    [24] L. Messersmith, “Aeroacoustic Resonace and Surface Heat Transfer From Underexpanded Impinging Jets,” AIAA paper 2994-3077, 1994
    [25] 王昌楠, “Experimental Study on the Shock Oscillating in an Underexpanded Jet to Cavity Interaction Flow,” 國立成功大學航空太空工程研究所碩士論文, 1997.
    [26] 郭伯翔, “Experimental Investigation of The Heat Transfer Characteristics In a Underexpanded Jet Induced Resonance Tube,” 國立成功大學航空太空工程研究所碩士論文, 1998.
    [27] 施純榮, “Effect of Constant Height Throat Section on a Two-Dimensional Nozzle,”國立成功大學航空太空工程研究所碩士論文, 2000.
    [28] 李秉勳, “Investigation of a Two-Dimensional Supersonic Under Expansion Jet to Tapered Cavity Flow,”國立成功大學航空太空工程研究所碩士論文, 2002.
    [29] Maddox, A. R. and Binder, R. C., “A new dimension in Schlieren technique: Flow field analysis using color,” AIAA paper 70-223, 1970.
    [30] Settles, G. S., “Modern Developments in flow visualization,” AIAA J., vol. 24, No. 8, pp. 1313-1323. , 1986.
    [31] Goldstein, R. J., “Fluid Mechanics Measurements”, Second edition, Taylor & Francis publishers, University of Minnesota, pp. 451-474, 1996.
    [32] Andrew Davidhazy, “Playing with mirrors at more than 500 pictures per second with your SLR camera,”. http://www.rit.edu/~andpph/text-high-speed-slr.html

    下載圖示 校內:立即公開
    校外:2003-08-07公開
    QR CODE