| 研究生: |
劉建邦 Liu, Chien-Pang |
|---|---|
| 論文名稱: |
核殼奈米粒子形成之光學共振模態 Random Cavity modes formed by core-shell nanoparticles |
| 指導教授: |
張世慧
Chang, Shih-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 無序雷射 、核殼奈米粒子 、氮化銦 |
| 外文關鍵詞: | random media, InN, coreshell |
| 相關次數: | 點閱:69 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要的研究是無序雷射模態的數值模擬,我們使用時域有限差分法(Finite-Difference Time-Domain Method) 從InN奈米圓柱其基本光學性質的分析與探討開始,當奈米金屬圓柱尺寸約為幾十個奈米時,其可見光散射光譜會有一明顯共振的現象,稱為「表面電漿共振」(Surface Plasmon Resonance),其共振頻率與圓柱大小、形狀、材料以及鄰近物質有關。我們將許多奈米圓柱隨機分佈於無序材料樣品中,光子在樣品中被奈圓柱散射並誘發相長性干涉,而當某些特定波長的光被局限於樣品中時,即可產生特定的頻譜,本論文的目的即是要探討在哪種情況下其光的局限效果最佳,透過改變樣品大小、樣品中奈米圓柱的數目多寡、奈米圓柱的形狀或是核殼奈米圓柱其核半徑與殼厚度比的改變來達到把光局限在樣品中的效果。
In this thesis, we study the random cavity modes formed within the random media by finite-difference time-domain method. Starting from the analysis of the basic optical properties of InN cylindrical nanoparticles, resonant scattering spectra are calculated. When the size of the metal cylindrical nanoparticle is about dozens of nanometers, its scattering spectrum has a resonant peak in the visible wavelength region, called the surface plasmon resonance. Its peak resonant wavelength depends on particle size, shape, its compound dielectric properties, and the dielectric environment. We arrange those cylindrical nanoparticles randomly in space to form a random media. Photons traveling inside the sample will be scattered by those cylindrical nanoparticles and lead to a constructive interference. When photons with particular wavelength are trapped inside the sample, a lasing cavity mode is formed. The purpose of this thesis is to study the light localization condition by changing the sample size, particle filling factors, or the ratio of the core radius and the shell thickness for core-shell InN cylindrical nanoparticles.
[1] H. Cao, J.Y. Xu, D.Z. Zhang, S.H. Chang, S.T. Ho, E.W. Seelig, X. Liu, and R.P.H. Chang, "Spatial confinement of laser light in active random media, " Phys. Rev. Letts., (84), pp. 5584-5587 (2000).
[2] H. Cao, "Random LASERS Development, Features and Applications," Optics & Photonics News, pp24-29(2005)
[3] H. Cao, "Lasing in random media", Waves Random and Complex Media, 13, R1-R39, 2003
[4] A. Yariv, "Optical Electronics in Modern Communications", Oxford University Press, New York, 1997
[5] D.S. Wiersma, "The smallest random laser" Nature (London) 406, 132 (2000)
[6] H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seeling, Q. H. Wang, and R. P. H. Chang, "Random Laser Action in Semiconductor Powder", Phys. Rev. Lett. 82, 2278 (1999).
[7] H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, "Microlaser made of disordered media", Appl. Phys. Lett. 76, 2997 (2000)
[8] A. Taflove , Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House , Norwood, MA,1995)
[9] C. Gouedard, D. Husson, C. Sauteret, F. Auzel, and A. Mingus, "Generation of spatially incoherent short pulses in laser-pumped neodymium stoichiometric crystals and powders" , J. Opt. Soc. Amer. B, vol. 10, pp.2358-2363, Dec.1993
[10] N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media", Nature, vol. 368, pp. 436-438, Mar. 1994
[11] S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. A. Zakhidov, and R. H. Baughman, "Stimulated emission in high gain organic media", Phys. Rev. B, vol. 59, pp. R5282-5287, Feb. 1999
[12] S. V. Frolov, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, "Laser-like emission in opal photonic crystals", Optics Commun., vol. 162, pp. 241-246, Apr. 1999
[13] G. Zacharakis, N. A. Papadogiannis, G. Pilippidis, and T. G. Papazoglou, "Photon statistics of laserlike emission from polymeric scattering gain media", Opt. Lett., vol. 25, pp. 923-925, 2000
[14] D. Wiersma and S. Cavalier, "Light emission: A temperature-tunable random laser", Nature, vol. 414, pp. 708-709, Dec. 2001
[15] M. H. Guang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, "Room-Temperature Ultraviolet Nanowire Nanolasers", Science 292, 1897 (2001)
[16] C. H. Liu, J. A. Zapien, Y. Yao, X. M. Meng, C.S. Lee, S. S. Fan, Y. Lifhitz, and S. T. Lee, "High-Density, Ordered Ultraviolet Light-Emitting ZnO Nanowire Arrays", Adv. Mater. 15, 838 (2003)
[17] J. H. Choy, E. S. Jang, J. H. Won, J. H. Chung, D. J. Jang, and Y. W. Kim, "Hydrothermal route to ZnO nanocoral reefs and nanofibers", Appl. Phys. Lett. 84, 287 (2004)
[18] J. C. Johnson, H. Q. Yan, P. D. Yang, and R. J. Saykally, "Optical Cavity Effects in ZnO Nanowire Lasers and Waveguide", J. Phys. Chem. B 107, 8816 (2003)
[19] Z. R. Qiu, K. S. Wong, M. M. Wu, W. J. Lin, and H. F. Xu, "Microcavity lasing behavior of oriented hexagonal ZnO nanowhiskers grown by hydrothermal oxidation", Appl. Phys. Lett. 84, 2739 (2004)
[20] J. H. Choy, E. S. Jang, J. H. Won, J. H. Chung, D. J. Jang, and Y. W. Kim, "Soft Solution Route to Directionally Grown ZnO Nanorod Arrays on Si Wafer; Room-Temperature Ultraviolet Laser", Adv. Mater. 15, 1911 (2003)
[21] Y. K. Tseng, H. C. Hsu, W. F. Hsieh, K. S. Liu, and I. C. Chen, "Two-step oxygen injection process for growing ZnO nanorods", J. Mater. Res. 18, 2837 (2003)
[22] A. B. Hartanto, X. Ning, Y. Nakata, and T. Okada, "Growth mechanism of ZnO nanorods from nanoparticles formed in a laser ablation plume ", Appl. Phys. A. Matter. Sci. Process. 78, 299 (2004)
[23] H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, " ZnO Nanoribbon Microcavity Lasers", Adv. Mater. 15, 1907 (2003)
[24] K. H. Chen, G. M. Hsu, M. S. Hu, J. S. Hwang, L. S. Hong, Y. F. Chen, "Infrared lasing in InN nanobelts", Appl. Phys. Lett. 90, 123109 (2007)
[25] Y. K. Liu, J. A. Zapien, Y. Y. Shan, C. Y. Geng, C. S. Lee, and S. T. Lee, Adv. Mater. 17, 1372 (2005)
[26] M. S. Hu, W. M. Wang, T. T. Chen, L. S. Hong, C. W. Chen, C. C. Chen, Y. F. Chen, K. H. Chen, L. C. Chen, "Sharp Infrared Emission from Single-Crystalline Indium Nitride Nanobelts Prepared Using Guided-Stream Thermal Chemical Vapor Deposition", Adv. Func. Mater. 16, 537-541 (2006)
[27] V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, Phys. Status Solidi B 229, R1 (2002)
[28] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002)
[29] B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, Phys. Rev. B 69, 115216 (2004)
[30] S. Gwo, C. L. Wu, C. H. Shen, W. H. Chang, T. M. Hsu, J. S. Wang, and J. T. Hsu, Appl. Phys. Lett. 84, 3765 (2004)
[31] A. A. Klochikhin, V. Yu. Davydov, V. V. Emtsev, A. V. Sakharov, V. A. Kapitonov, B. A. Andreev, H. Lu, and W. J. Schaff, Phys. Rev. B 71, 195207 (2005)
[32] H. Ahn, C.H. Shen, C. L. Wu, and S. Gwo, Appl. Phys. Lett. 86, 201905 (2005)
[33] K. T. Tsen, C. Poweleit, D. K. Ferry, H. Lu, and W. J. Schaff, Appl. Phys. Lett. 86, 222103 (2005)
[34] S. K. O'Leary, B. E. Foutz, M. S. Shur, and L. F. Eastman, Appl. Phys. Lett. 87, 222103 (2005)
[35] C. Y. Chang, G. C. Chi, W. M. Wang, L. C. Chen, K. H. Chen, F. Ren, and S. J. Pearton, Appl. Phys. Lett. 87, 093112 (2005)
[36] H. Raether, "Surface Plasmons" (springer, New York, 1988)
[37] C. Bohren and D. Huffman, "Absorption and Scattering of Light by Small Particles", (Wiley, New York, 1983)
[38] 吳民耀, 劉威志, "表面電漿子理論與模擬", 物理雙月刊(二八卷二期)2006.4
[39] R. Y. Koyama, N. V. Smith, W. E. Psicer, "Optical Properties of Indium", Phys. Rev. B, Vol 8, num 6, 1973 September
[40] E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, "A Hybridization Model for the Plasmon Response of Complex Nanostructures", Science, vol. 302, 2003 October