簡易檢索 / 詳目顯示

研究生: 蔡欣諭
Tsai, Hsin-Yu
論文名稱: 利用超材料結構增加電磁波吸收率之理論與實驗分析
Theoretical and Experimental Study of Increasing Electromagnetic Waves Absorptivity by Using Metamaterial Structures
指導教授: 鄭金祥
Cheng, Chin-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 113
中文關鍵詞: 超材料高吸收率太赫茲波段開口諧振環
外文關鍵詞: Metamaterial, High absorptivity, Terahertz regime, Split-ring resonator
相關次數: 點閱:88下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究模擬一種二維平板型的超材料結構,藉以增加入射電磁波的吸收率,並將二維超材料吸收器推展成三維結構,亦進行分析比較。同時實作一個微波開口諧振環的超材料結構,並建立單極天線的量測環境,對微波超材料樣品進行量測驗證。本研究中模擬的平版型超材料吸收器是將金屬的陣列堆疊在一層介電質材料上,當電磁波入射至金屬,電磁波與金屬間產生特殊的電磁場共振效應,藉此提高電磁波吸收率。此吸收器在太赫茲波段達到極高吸收率,其操作頻率較窄,但相較於部分寬頻的吸收器可達到更高的吸收率。由於超材料本身微結構的大小在設計上須與入射電磁波波長相對應,本研究對此進行參數分析,藉以了解微結構尺寸大小造成操作頻率所對應吸收率曲線的變化情形。在實驗部分實際製作一種開口諧振環的微波超材料,藉由天線量測多種不同尺寸之微波開口諧振環的吸收現象,以比較量測出之透射係數的變化趨勢,來觀察微波超材料的電磁波吸收能力。

    In this thesis, we present a highly efficient metamaterial absorber. This kind of metamaterial absorber can achieve nearly perfect absorption in terahertz regime. When incident light propagate through the metamaterial absorber, interaction between electromagnetic wave and the metamaterial structure cause a significant change in electromagnetic field resonance. Enhancing the local electric field resonance will result in better absorptions in corresponding frequency. Therefore, in this study, the metamaterial absorber is analysis by performing numerical simulation. Simulation shows that the proposed planar metamaterial absorber can achieve a high absorptivity over 99.9% at 70.73THz. And the average absorptivity in the range between 70THz to 80THz is over 79%.

    摘要 I Extended Abstract II 誌謝 IX 目錄 X 表目錄 XIV 圖目錄 XV 符號索引 XVIII 第一章 緒論21 1.1研究動機21 1.1.1超材料源起23 1.1.2超材料發展24 1.2超材料吸收器26 1.2.1傳統電磁波吸收器26 1.2.2超材料吸收器27 1.2.3表面電漿28 1.3論文架構29 第二章 超材料理論模型30 2.1負折射30 2.2電磁波方程式31 2.2.1馬克士威方程式31 2.2.2能量流動方向34 2.2.3電磁波動方程式35 2.2.4邊界條件38 2.3平面電磁波39 2.3.1 TEM波39 2.3.2 TE波39 2.3.3 TM波40 2.4德汝德模型(Drude Model)40 2.4.1自由電子模型40 2.4.2碰撞參數與運動方程式41 2.4.3金屬光學特性42 第三章 二維吸收器數值模擬45 3.1散射參數(S-parameters)45 3.1.1波長與電路系統45 3.1.2散射參數的定義46 3.2吸收率計算48 3.3二維超材料吸收器49 3.3.1模型結構49 3.3.2材料參數設定50 3.4模擬結果討論51 3.4.1文獻比較51 3.4.2吸收率曲線52 3.5參數分析53 3.5.1微結構幾何參數53 第四章 三維吸收器數值模擬55 4.1邊界條件設定55 4.2模擬結果55 4.2.1陣列型超材料吸收器55 4.2.2十字型超材料吸收器56 第五章 量測實驗57 5.1電磁波吸收的研究57 5.1.1電磁波遮蔽效益57 5.1.2開口諧振環(Split-ring resonator)58 5.2超材料樣品製程58 5.3實驗系統架設59 5.3.1設計天線59 5.3.2單極天線60 5.3.3電磁波衰減60 5.3.4透射參數與吸收率計算62 5.4實驗量測62 5.4.1量測環境62 5.4.2實驗流程62 5.5實驗結果63 第六章 結論66 參考文獻 69

    [1] V. G. Veselago, "The electrodynamics of substances with simultaneously negative value of ϵ and μ " Physics-Uspekhi, vol. 10, p. 509, 1968.
    [2] R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, vol. 292, p. 77, 2001.
    [3] D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. Pendry, A. Starr, et al., "Metamaterial electromagnetic cloak at microwave frequencies," Science, vol. 314, p. 977, 2006.
    [4] J. B. Pendry and D. R. Smith, "Reversing light with negative refraction," Physics Today, vol. 57, p. 37, 2004.
    [5] M. D. Arnold and M. G. Blaber, "Optical performance and metallic absorption in nanoplasmonic systems," Optics Express, vol. 17, p. 3835, 2009.
    [6] F. Bilotti and L. Sevgi, "Metamaterials: Definitions, properties, applications, and FDTD‐based modeling and simulation," International Journal of RF and Microwave Computer‐Aided Engineering, vol. 22, p. 422, 2012.
    [7] Y. Liu and X. Zhang, "Metamaterials: a new frontier of science and technology," Chemical Society Reviews, vol. 40, p. 2494, 2011.
    [8] Y. Avitzour, Y. A. Urzhumov, and G. Shvets, "Wide-angle infrared absorber based on a negative-index plasmonic metamaterial," Physical Review B, vol. 79, p. 045131, 2009.
    [9] M. Diem, T. Koschny, and C. M. Soukoulis, "Wide-angle perfect absorber/thermal emitter in the terahertz regime," Physical Review B, vol. 79, p. 033101, 2009.
    [10] N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, "Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging," Physical Review B, vol. 79, p. 125104, 2009.
    [11] N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, "Perfect metamaterial absorber," Physical Review Letters, vol. 100, p. 207402, 2008.
    [12] H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, et al., "A dual band terahertz metamaterial absorber," Journal of Physics D: Applied Physics, vol. 43, p. 225102, 2010.
    [13] B. Wang, T. Koschny, and C. M. Soukoulis, "Wide-angle and polarization-independent chiral metamaterial absorber," 2010.
    [14] R.-L. Chern and Y.-T. Chen, "Effective parameters for photonic crystals with large dielectric contrast," Physical Review B, vol. 80, p. 075118, 2009.
    [15] H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, et al., "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization," Physical Review B Condensed Matter and Materials Physics, vol. 78, p. 241103, 2008.
    [16] J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, et al., "Extraordinary optical absorption through subwavelength slits," Optics Letters, vol. 34, p. 686, 2009.
    [17] T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, vol. 391, p. 667, 1998.
    [18] A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Physics Reports, vol. 408, p. 131, 2005.
    [19] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, et al., "Three-dimensional optical metamaterial with a negative refractive index," nature, vol. 455, p. 376, 2008.
    [20] 趙凱華, 陳熙謀, 新概念物理教程: 電磁學, 高等教育出版社, 2006.
    [21] K. Kurokawa, "Power waves and the scattering matrix," Microwave Theory and Techniques, IEEE Transactions on, vol. 13, p. 194, 1965.
    [22] Y. Liu, Y. Chen, J. Li, T.-c. Hung, and J. Li, "Study of energy absorption on solar cell using metamaterials," Solar Energy, vol. 86, p. 1586-, 2012.
    [23] M. A. Ordal, R. J. Bell, R. Alexander Jr, L. Long, and M. Querry, "Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W," Applied Optics, vol. 24, p. 4493, 1985.
    [24] E. J. Zeman and G. C. Schatz, "An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium," Journal of Physical Chemistry, vol. 91, p. 634, 1987.
    [25] M. G. Blaber, M. D. Arnold, and M. J. Ford, "Search for the ideal plasmonic nanoshell: the effects of surface scattering and alternatives to gold and silver," The Journal of Physical Chemistry vol. 113, p. 3041, 2009.
    [26] J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, "Localized surface plasmon resonances arising from free carriers in doped quantum dots," Nature Materials, vol. 10, p. 361, 2011.
    [27] J. Huo, L. Wang, and H. Yu, "Polymeric nanocomposites for electromagnetic wave absorption," Journal of Materials Science, vol. 44, p. 3917, 2009.
    [28] R. Shelby, D. Smith, S. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Applied Physics Letters, vol. 78, p. 489, 2001.
    [29] D. Smith, D. Vier, T. Koschny, and C. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E, vol. 71, p. 036617, 2005.

    下載圖示 校內:2016-08-01公開
    校外:2016-08-01公開
    QR CODE