| 研究生: |
蔡欣諭 Tsai, Hsin-Yu |
|---|---|
| 論文名稱: |
利用超材料結構增加電磁波吸收率之理論與實驗分析 Theoretical and Experimental Study of Increasing Electromagnetic Waves Absorptivity by Using Metamaterial Structures |
| 指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 超材料 、高吸收率 、太赫茲波段 、開口諧振環 |
| 外文關鍵詞: | Metamaterial, High absorptivity, Terahertz regime, Split-ring resonator |
| 相關次數: | 點閱:88 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究模擬一種二維平板型的超材料結構,藉以增加入射電磁波的吸收率,並將二維超材料吸收器推展成三維結構,亦進行分析比較。同時實作一個微波開口諧振環的超材料結構,並建立單極天線的量測環境,對微波超材料樣品進行量測驗證。本研究中模擬的平版型超材料吸收器是將金屬的陣列堆疊在一層介電質材料上,當電磁波入射至金屬,電磁波與金屬間產生特殊的電磁場共振效應,藉此提高電磁波吸收率。此吸收器在太赫茲波段達到極高吸收率,其操作頻率較窄,但相較於部分寬頻的吸收器可達到更高的吸收率。由於超材料本身微結構的大小在設計上須與入射電磁波波長相對應,本研究對此進行參數分析,藉以了解微結構尺寸大小造成操作頻率所對應吸收率曲線的變化情形。在實驗部分實際製作一種開口諧振環的微波超材料,藉由天線量測多種不同尺寸之微波開口諧振環的吸收現象,以比較量測出之透射係數的變化趨勢,來觀察微波超材料的電磁波吸收能力。
In this thesis, we present a highly efficient metamaterial absorber. This kind of metamaterial absorber can achieve nearly perfect absorption in terahertz regime. When incident light propagate through the metamaterial absorber, interaction between electromagnetic wave and the metamaterial structure cause a significant change in electromagnetic field resonance. Enhancing the local electric field resonance will result in better absorptions in corresponding frequency. Therefore, in this study, the metamaterial absorber is analysis by performing numerical simulation. Simulation shows that the proposed planar metamaterial absorber can achieve a high absorptivity over 99.9% at 70.73THz. And the average absorptivity in the range between 70THz to 80THz is over 79%.
[1] V. G. Veselago, "The electrodynamics of substances with simultaneously negative value of ϵ and μ " Physics-Uspekhi, vol. 10, p. 509, 1968.
[2] R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, vol. 292, p. 77, 2001.
[3] D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. Pendry, A. Starr, et al., "Metamaterial electromagnetic cloak at microwave frequencies," Science, vol. 314, p. 977, 2006.
[4] J. B. Pendry and D. R. Smith, "Reversing light with negative refraction," Physics Today, vol. 57, p. 37, 2004.
[5] M. D. Arnold and M. G. Blaber, "Optical performance and metallic absorption in nanoplasmonic systems," Optics Express, vol. 17, p. 3835, 2009.
[6] F. Bilotti and L. Sevgi, "Metamaterials: Definitions, properties, applications, and FDTD‐based modeling and simulation," International Journal of RF and Microwave Computer‐Aided Engineering, vol. 22, p. 422, 2012.
[7] Y. Liu and X. Zhang, "Metamaterials: a new frontier of science and technology," Chemical Society Reviews, vol. 40, p. 2494, 2011.
[8] Y. Avitzour, Y. A. Urzhumov, and G. Shvets, "Wide-angle infrared absorber based on a negative-index plasmonic metamaterial," Physical Review B, vol. 79, p. 045131, 2009.
[9] M. Diem, T. Koschny, and C. M. Soukoulis, "Wide-angle perfect absorber/thermal emitter in the terahertz regime," Physical Review B, vol. 79, p. 033101, 2009.
[10] N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, "Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging," Physical Review B, vol. 79, p. 125104, 2009.
[11] N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, "Perfect metamaterial absorber," Physical Review Letters, vol. 100, p. 207402, 2008.
[12] H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, et al., "A dual band terahertz metamaterial absorber," Journal of Physics D: Applied Physics, vol. 43, p. 225102, 2010.
[13] B. Wang, T. Koschny, and C. M. Soukoulis, "Wide-angle and polarization-independent chiral metamaterial absorber," 2010.
[14] R.-L. Chern and Y.-T. Chen, "Effective parameters for photonic crystals with large dielectric contrast," Physical Review B, vol. 80, p. 075118, 2009.
[15] H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, et al., "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization," Physical Review B Condensed Matter and Materials Physics, vol. 78, p. 241103, 2008.
[16] J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, et al., "Extraordinary optical absorption through subwavelength slits," Optics Letters, vol. 34, p. 686, 2009.
[17] T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, vol. 391, p. 667, 1998.
[18] A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Physics Reports, vol. 408, p. 131, 2005.
[19] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, et al., "Three-dimensional optical metamaterial with a negative refractive index," nature, vol. 455, p. 376, 2008.
[20] 趙凱華, 陳熙謀, 新概念物理教程: 電磁學, 高等教育出版社, 2006.
[21] K. Kurokawa, "Power waves and the scattering matrix," Microwave Theory and Techniques, IEEE Transactions on, vol. 13, p. 194, 1965.
[22] Y. Liu, Y. Chen, J. Li, T.-c. Hung, and J. Li, "Study of energy absorption on solar cell using metamaterials," Solar Energy, vol. 86, p. 1586-, 2012.
[23] M. A. Ordal, R. J. Bell, R. Alexander Jr, L. Long, and M. Querry, "Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W," Applied Optics, vol. 24, p. 4493, 1985.
[24] E. J. Zeman and G. C. Schatz, "An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium," Journal of Physical Chemistry, vol. 91, p. 634, 1987.
[25] M. G. Blaber, M. D. Arnold, and M. J. Ford, "Search for the ideal plasmonic nanoshell: the effects of surface scattering and alternatives to gold and silver," The Journal of Physical Chemistry vol. 113, p. 3041, 2009.
[26] J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, "Localized surface plasmon resonances arising from free carriers in doped quantum dots," Nature Materials, vol. 10, p. 361, 2011.
[27] J. Huo, L. Wang, and H. Yu, "Polymeric nanocomposites for electromagnetic wave absorption," Journal of Materials Science, vol. 44, p. 3917, 2009.
[28] R. Shelby, D. Smith, S. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Applied Physics Letters, vol. 78, p. 489, 2001.
[29] D. Smith, D. Vier, T. Koschny, and C. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E, vol. 71, p. 036617, 2005.