簡易檢索 / 詳目顯示

研究生: 江彥樟
Chiang, Yen-Chang
論文名稱: 光響應電容電壓量測方法對薄膜電晶體型電荷擷取式記憶體能隙內能態密度研究
Investigation of subgap density of states in TFT charge trapping memory with optical response of capacitance-voltage measurement
指導教授: 陳貞夙
Chen, Jen-Sue
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 157
中文關鍵詞: 光響應電容電壓量測薄膜電晶體型電荷擷取式記憶體
外文關鍵詞: CTM-TFT, optical response of C-V measurement, sub-gap DOS, photo-induced oxygen vacancy
相關次數: 點閱:110下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以三種不同材料與結構之薄膜電晶體(Thin film transistor, TFT)試片探討主動層之能隙內能態密度(sub-gap density of state, sub-gap DOS)。試片種類分別為: (1) 變主動層厚度ZnO TFT、(2) 溶液法ZTO TFT以及(3) 薄膜電晶體型電荷擷取式記憶體(Charge Trapping Memory-Thin film Transistor, CTM-TFT)。
    在製程上,以磁控濺鍍之方式,調控不同濺鍍時間製備不同厚度之ZnO薄膜於SiO2/p+Si基板(p+ Si為閘極,SiO2為介電層)上,做為ZnO TFT元件之主動層,此外,溶液法ZTO TFT之主動層製備,則是將ZTO之前驅液,以旋轉塗佈之方式塗佈於基板上,而在CTM-TFT中,將SiO2做為阻絕層(blocking layer),並在SiO2上以電子束蒸鍍,鍍上Ni與AlOx分別做為捕捉層(trapping layer)與穿隧層(tunneling layer),之後以溶液法製備出ZTO做為主動層。最後將三種試片以電子束蒸鍍,鍍上Al電極做為源極與汲極。
    在探討主動層(ZnO or ZTO)能隙內能態密度之量測上,使用之量測方式為光響應電容電壓(C-V)量測方法。量測之手法為,以能量小於主動層(ZnO or ZTO)能隙之單波長雷射光源做為照射光源,並於照光前與照光時,各量一條C-V曲線,分別作為Cdark與Clight,由於照光會使得存在主動層(ZnO or ZTO)能隙內能態上之電子被激發至導帶(conduction band, EC)以上,而使得原本能隙內能態相對地帶正電。此帶正電之能隙內能態將會使得C-V曲線往負方向偏移,而藉由此照光前與照光時之C-V曲線之變化,我們得以求得特定閘極偏壓時之能隙內能態密度。另外,也利用照光前之C-V曲線經計算而得到閘極偏壓對應於能量位置(E-Ec)之關係,因此得以藉閘極偏壓與能隙內能態密度以及能量位置之關係,而得到能隙內能態密度對能量位置之作圖。
    確立量測手法後,首先討論變主動層厚度ZnO TFT,隨著主動層厚度增加,光響應電容電壓量測得到能隙內能態密度也會隨之減少,並使用X光光電子能譜儀(XPS)分析得到,隨主動層厚度增加,鄰近有氧空缺之氧鍵結能(peak OII)的比例也隨之增加,與光響應電容電壓量測之結果相符合。 而對於添加錫(Sn)元素之非晶態ZTO主動層,由於錫(Sn)元素之離子位能較鋅(Zn)之離子位能大,能夠對氧離子有較強的吸引力,其能隙內能態密度較多晶態ZnO主動層之能隙內能態密度小。
    建立於先前研究上,CTM-TFT之抹除機制為藉由照射白光而使得主動層內部產生帶正電之氧空缺,並輔以-10 V之閘極偏壓,將捕捉層內之電子拉出與主動層內之氧空缺中和。 因此,若比照原本之量測手法,在照光時量測C-V曲線這一步驟,將會持續抹除CTM-TFT元件,而無法使其保持原本之抹除狀態。為了量測到特定抹除狀態下之氧空缺含量,在此將光響應電容電壓量測方法稍作改變。
    基於光響應電容電壓量測方法之量測原理,將此量測方法改為,將CTM-TFT於抹除前與抹除後,各量一條C-V曲線,但量測時均不照光,分別作為Cinitial與Clight-erase。由輔助實驗得知,進行照光抹除後,主動層內之能隙內能態密度並不會因為關掉白光而恢復至抹除前之狀態,因此仍能藉由觀察C-V曲線之變化求得能隙內能態密度。
    而在CTM-TFT之實驗,於pristine狀態與program狀態下使用改良過之光響應電容電壓量測方法分別量測兩種狀態下之能隙內能態密度,並在距離EC以下0.5 eV~1.0 eV處,觀察到VO+與VO2+兩種缺陷所對應之能態密度。 藉由pristine狀態與program 狀態下量測到之VO+與VO2+兩種缺陷所對應之能態密度,得此藉以證明,抹除機制與能隙內能態密度之關聯性,為主動層內部之不帶電氧空缺VO因照光而被激發成帶正電之氧空缺(VO+、VO2+),此帶正電之氧空缺(VO+、VO2+)將捕捉層內之電子拉出並中和而又形成能量較深之不帶電VO ; 然而在pristine狀態時,由於捕捉層並無電子捕捉,因此因照光而形成之帶正電之氧空缺(VO+、VO2+)並不會拉出電子,因此pristine狀態下抹除後之帶正電之氧空缺(VO+、VO2+)能態密度較program狀態下抹除後之帶正電之氧空缺(VO+、VO2+)能態密度大。
    本實驗使用光響應電容電壓量測方法技術,於變厚度ZnO TFT與溶液法ZTO TFT上確認此量測技巧之正確性,並將之量測CTM-TFT元件於不同抹除條件下之能隙內能態密度,藉以說明CTM-TFT之照光抹除機制,確實有帶正電之氧空缺吸引出捕捉層內之捕捉電子的現象。

    In this study, the sub-gap density of state (sub-gap DOS) of active layer of three different materials and structures of thin film transistors are under discussion. Each is (1) ZnO TFT with different active layer thickness, (2) solution process ZTO TFT and (3) charge trapping memory-thin film transistor (CTM-TFT).
    In the fabrication process, active layer of ZnO TFT is sputtered by RF sputtering with different sputtering time to control different ZnO thickness. And, the active layer of solution process ZTO TFT is spin-coated with the solution of ZTO precursor. Besides, in the fabrication process of CTM-TFT, use SiO2 as blocking layer, deposit Ni and AlOx as trapping layer and tunneling layer, and coat ZTO as active layer with ZTO precursor. Finally, the Al is deposited as source and drain.
    In the measurement of sub-gap DOS of active layer, optical response of capacitance-voltage measurement is applied. By using the monochromatic laser whose energy is smaller than the bandgap of active layer, C-V curves are measured before laser illumination and while illumination as Cdark and Clight, respectively. Owing to the laser illumination, electrons originally existing in sub-gap state are excited to the conduction band and leave relatively positively charged sub-gap state. And this relatively positively charged sub-gap state will cause C-V curve negatively shifting. By the extent of C-V curve shifting, the sub-gap DOS at certain gate voltage is extracted. What’s more, with C-V curve before illumination, the relation of energy and gate voltage is also extracted. With sub-gap DOS at certain gate voltage and the relation of energy and gate voltage, a completed diagram of sub-gap DOS is obtain.
    In the discussion of ZnO TFT, with increasing the thickness of ZnO active layer, the sub-gap DOS of active layer will decrease correspondingly. The data of XPS of ZnO active layer reveal that with increasing the thickness of ZnO, the bonding energy of oxygen neighboring oxygen-vacancies will increase. The data of XPS agree with the result of optical response of C-V measurement.
    In the discussion of ZTO TFT, by doping Sn element, ZTO has few sub-gap DOS than ZnO because Sn has larger bonding orbital. In amorphous oxide semiconductor, the arrangement of atoms are disarray, so smaller bonding orbital of Zn will be easier to have cleavage between metal atom and this cleavage can be treated as the vacancy of metal atom. But, larger bonding orbital of Sn will reduce the formation of defect of metal atom and therefore reduce the sub-gap DOS of ZTO.
    Based on previous studies, the CTM-TFT erase mechanism is that by white light illumination, positively charged oxygen vacancies will be generated in active layer and pull out and neutralize the electrons in the trapping layer with the assistance of -10 V gate bias. If applying the original optical response of C-V measurement to the CTM-TFT, the operation of the measurement will keep erasing the CTM-TFT device and make CTM-TFT not maintain at the situation of erase. Hence, optical response of C-V measurement should be modified for CTM-TFT.
    In view of the principle of optical response of C-V measurement that the sub-gap DOS positively charged and cause C-V curve negatively shifted, the modified optical response of C-V measurement for CTM-TFT is that measure C-V curves before and after erase. After erase, the sub-gap DOS of active layer will not recover to the state before erase immediately, so the sub-gap DOS still could be extracted from the shifting of C-V curves.
    In the experiment of CTM-TFT, sub-gap DOS are extracted by the C-V curves measured with modified optical response of C-V measurement at pristine state and program state, respectively. The DOS corresponding to VO+ and VO2+ is observed below conduction band 0.5 eV to 1.0 eV. By the DOS corresponding to VO+ and VO2+ extracted at pristine state and program state, respectively, the correlation of erase mechanism and sub-gap DOS is that by white light illumination, neutral VO-s are excited into VO2+ and VO+ which can pull put and neutralize the electrons in the trapping layer with the assistance of -10 V gate bias. After neutralizing with electrons, VO2+ and VO+ will recover into VO consequently. Furthermore, there are no electrons existing in the trapping layer at pristine state, so the measured DOS corresponding to VO+ and VO2+ at pristine state will be larger than at program state.
    In this study, the technique of optical response of C-V measurement is applied on TFT and CTM-TFT devices. Confirming the accuracy of technique of the measurement with varying the thickness of active layer of ZnO TFT and solution process ZTO TFT. Apply the technique to the CTM-TFT and explain the correlation of erase mechanism and sub-gap DOS.

    第一章 緒論 1 1-1 前言 1 1-2 研究目的 3 第二章 理論基礎與文獻回顧 4 2-1 薄膜電晶體 4 2-1.1 薄膜電晶體結構 4 2-1.2 薄膜電晶體操作原理 6 2-1.3 薄膜電晶體 I-V 特性 8 2-1.4 薄膜電晶體 C-V 特性 13 2-2 非晶氧化物半導體 18 2-3 非晶氧化物半導體之能隙內能態密度 20 2-3.1 量測與計算原理 20 2-3.2 觀測能隙內能態密度之基本方法 26 2-3.3 變溫ID-VG量測DOS 33 2-3.4 變頻C-V量測DOS 35 2-3.5 Deep-level DOS量測 37 2-3.6 照光C-V量測 39 2-3.7 不同主動層厚度TFT之缺陷密度 41 2-4 薄膜電晶體型電荷擷取式記憶體(CHARGE TRAPPING MEMORY TFT, CTM-TFT)之ERASE機制 43 第三章 實驗方法與步驟 46 3-1 簡介 46 3-2 實驗材料 47 3-2.1清洗基板藥品 47 3-2.2 ZnO濺鍍靶材(Sputtering target) 47 3-2.3 ZTO溶液配置藥品 47 3-2.4電子束蒸鍍源(Evaporation source) 47 3-2.5基板(Substrate) 48 3-2.6濺鍍、蒸鍍氣體(Gas ambient) 48 3-3 實驗設備 49 3-3.1電子束蒸鍍系統 (Electron beam evaporation system) 49 3-3.2磁控濺鍍系統(Magnetron sputtering system) 50 3-4 試片製作 51 3-4.1 前處理 51 3-4.2 ZnO TFT試片製作 51 3-4.3 Spin-coated ZTO TFT試片製作 52 3-4.4 Charge Trapping Memory TFT 試片製作 52 3-5 分析儀器 53 3-5.1 表面粗度儀(Alpha-step profilometer, α-step) 53 3-5.2 X光光電子能譜儀(X-ray Photoelectron Spectroscopy) 54 3-5.3 穿透式電子顯微鏡(Transmission Electron Microscopy) 55 3-5.4 低掠角X-光繞射儀 (Grazing Incident Angle X-ray Diffraction, GIAXRD ) 56 3-5.5 四點探針儀 57 3-5.6 橢圓偏光儀(Eillipsometer) 58 3-5.7 精密阻抗分析儀(Precision impedance analyzer) 59 3-5.8 半導體參數分析儀(Semiconductor parameter analyzer) 60 第四章 結果與討論 61 4-1 元件命名與元件結構 61 4-2材料分析 64 4-2.1 TEM分析 65 4-2.2 XRD 分析 69 4-2.3 XPS 分析 71 4-3電性分析 90 4-3.1 變厚度ZnO TFT基本電性討論 90 4-3.2 溶液製程 ZTO TFT基本電性討論 105 4-3.3 薄膜電晶體之C-V量測 111 4-4 薄膜電晶體的DOS計算與結果比較 122 4-4.1 主動層與介電層之表面電位計算方式 122 4-4.2 主動層照光機制 125 4-4.3 光響應電容電壓曲線計算能隙內能態密度 130 4-5 CTM-TFT抹除機制與能隙內能態密度之關聯性 132 結論 144 參考資料 146

    [1] E. Fortunato, P. Barquinha, and R. Martins, "Oxide semiconductor thin-film transistors: a review of recent advances," Advance Materials, vol. 24, pp. 2945-2986, 2012.
    [2] Donald A. Neamen, Semiconductor Physics And Devices: Basic Principles 4ed. US: McGraw-Hill Science Engineering, 2011, p. 371.
    [3] Kenji Nomura, Hiromichi Ohta, Akihiro Takagi, Toshio Kamiya, Masahiro Hirano, and Hideo Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," letters to nature, vol. 432, pp. 488-492, 2004.
    [4] Hyunjun Choi, Jungmin Lee, Hagyoul Bae, Sung-Jin Choi, Dae Hwan Kim, and Dong Myong Kim, "Bias-Dependent Effective Channel Length for Extraction of Subgap DOS by Capacitance-Voltage Characteristics in Amorphous Semiconductor TFTs," IEEE Transactions on Electron Devices, vol. 62, pp. 2689-2694, 2015.
    [5] R. Castagne and A. Vapaille, "Description of the SiO2-Si interface properties by means of very low frequency mos capacitance measurements," SURFACE SCIENCE, vol. 28, pp. 157-193, 1971.
    [6] A. Ralland, J. Richard, J. P. Kleider, and D. Mencaraglia, "Electrical Properties of Amorphous Silicon Transistors and MIS-Devices: Comparative Study of Top Nitride and Bottom Nitride Configurations," Journal of The Electrochemical Society, vol. 140, pp. 3679-3683, 1993.
    [7] M. Kuhn, "A quasi-static technique for mos C-V and surface state measurements," Solid-State Electronics, vol. 13, pp. 873-885, 1970.
    [8] H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, "High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer," Applied Physics Letters, vol. 86, p. 013503, 2005.
    [9] N. L. Dehuff, E. S. Kettenring, D. Hong, H. Q. Chiang, J. F. Wager, R. L. Hoffman, C. H. Park, and D. A. Keszler, "Transparent thin-film transistors with zinc indium oxide channel layer," Journal of Applied Physics, vol. 97, p. 064505, 2005.
    [10] Hideo Hosono, Masahiro Yasukawa, and Hiroshi Kawazoe, "Novel oxide amorphous semiconductors: transparent conducting amorphous oxides," Journal of Non-Crystalline Solids, vol. 203, pp. 334-344, 1996.
    [11] Hideo Hosono, Naoto Kikuchi, Naoyuki Ueda, and Hiroshi Kawazoe, "Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples.," Journal of Non-Crystalline Solids, vol. 198, pp. 165-169, 1996.
    [12] Hideo Hosono, "Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application," Journal of Non-Crystalline Solids, vol. 352, pp. 851-858, 2006.
    [13] Toshio Kamiya and Hideo Hosono, "Material characteristics and applications of transparent amorphous oxide semiconductors," NPG Asia Materials, vol. 2, pp. 15-22, 2010.
    [14] M. Orita, H. Ohta, M. Hirano, S. Narushima, and H. Hosono, "Amorphous transparent conductive oxide InGaO3(ZnO)m(m≤ 4): a Zn 4s conductor," Philosophical Magazine Part B, vol. 81, pp. 501-515, 2001.
    [15] Mutsumi Kimura, Takashi Nakanishi, Kenji Nomura, Toshio Kamiya, and Hideo Hosono, "Trap densities in amorphous-InGaZnO4 thin-film transistors," Applied Physics Letters, vol. 92, p. 133512, 2008.
    [16] Hagyoul Bae, Hyunjun Choi, Sungwoo Jun, Chunhyung Jo, Yun Hyeok Kim, Jun Seok Hwang, Jaeyeop Ahn, Saeroonter Oh, Jong-Uk Bae, Sung-Jin Choi, Dae Hwan Kim, and Dong Myong Kim, "Single-Scan Monochromatic Photonic Capacitance-Voltage Technique for Extraction of Subgap DOS Over the Bandgap in Amorphous Semiconductor TFTs," IEEE Electron Device Letters, vol. 34, pp. 1524-1526, 2013.
    [17] Tze-Ching Fung, Chiao-Shun Chuang, Charlene Chen, Katsumi Abe, Robert Cottle, Mark Townsend, Hideya Kumomi, and Jerzy Kanicki, "Two-dimensional numerical simulation of radio frequency sputter amorphous In–Ga–Zn–O thin-film transistors," Journal of Applied Physics, vol. 106, p. 084511, 2009.
    [18] Jaehong Park, Joohwi Lee, Cheol Seong Hwang, and Jung-Hae Choi, "Atomic and electronic structures of a-ZnSnO3/a-SiO2 interface by ab-initio molecular dynamics simulations," physica status solidi (b), vol. 253, pp. 1765-1770, 2016.
    [19] Joohwi Lee, Youngho Kang, Cheol Seong Hwang, Seungwu Han, Seung-Cheol Lee, and Jung-Hae Choi, "Effect of oxygen vacancy on the structural and electronic characteristics of crystalline Zn2SnO4," Journal of Materials Chemistry C, vol. 2, pp. 8381-8387, 2014.
    [20] John Robertson, "Physics of amorphous conducting oxides," Journal of Non-Crystalline Solids, vol. 354, pp. 2791-2795, 2008.
    [21] Wolfgang Körner and Christian Elsässer, "Density-functional theory study of stability and subgap states of crystalline and amorphous Zn–Sn–O," Thin Solid Films, vol. 555, pp. 81-86, 2014.
    [22] Kenji Nomura, Toshio Kamiya, Hiroshi Yanagi, Eiji Ikenaga, Ke Yang, Keisuke Kobayashi, Masahiro Hirano, and Hideo Hosono, "Subgap states in transparent amorphous oxide semiconductor, In–Ga–Zn–O, observed by bulk sensitive X-ray photoelectron spectroscopy," Applied Physics Letters, vol. 92, p. 202117, 2008.
    [23] Toshio Kamiya, Kenji Nomura, and Hideo Hosono, "Electronic structure of the amorphous oxide semiconductor a-InGaZnO4-x: Tauc-Lorentz optical model and origins of subgap states," physica status solidi (a), vol. 206, pp. 860-867, 2009.
    [24] Toshio Kamiya, Kenji Nomura, Masahiro Hirano, and Hideo Hosono, "Electronic structure of oxygen deficient amorphous oxide semiconductor a-InGaZnO4-x: Optical analyses and first-principle calculations," physica status solidi (c), vol. 5, pp. 3098-3100, 2008.
    [25] Chuan-Xin Huang, Jun Li, Xing-Wei Ding, Jian-Hua Zhang, Xue-Yin Jiang, and Zhi-Lin Zhang, "Temperature-dependent field-effect measurements method to illustrate the relationship between negative bias illumination stress stability and density of states of InZnO-TFTs with different channel layer thickness," Superlattices and Microstructures, vol. 83, pp. 367-375, 2015.
    [26] Chuan-Xin Huang, Jun Li, Yi-Zhou Fu, Jian-Hua Zhang, Xue-Yin Jiang, and Zhi-Lin Zhang, "Effect of hafnium doping on density of states in dual-target magnetron co-sputtering HfZnSnO thin film transistors," Applied Physics Letters, vol. 107, p. 213504, 2015.
    [27] Ji Kwang-Hwan and A Hong Yoon Jung Ji-in Kim, Se Yeob Park, Yeon-Gon Mo, Jong Han Jeong, Jang-Yeon Kwon, Myung-Kwan Ryu, Sang Yoon Lee, Rino Choi, and Jae Kyeong Jeonga, "The Effect of Density-of-State on the Temperature and Gate Bias-Induced Instability of InGaZnO Thin Film Transistors," Journal of The Electrochemical Society, vol. 157, pp. H983-H986, 2010.
    [28] Toshio Kamiya, Kenji Nomura, and Hideo Hosono, "Origin of definite Hall voltage and positive slope in mobility-donor density relation in disordered oxide semiconductors," Applied Physics Letters, vol. 96, p. 122103, 2010.
    [29] Xingwei Ding, Jianhua Zhang, Weimin Shi, Hao Zhang, Chuanxin Huang, Jun Li, Xueyin Jiang, and Zhilin Zhang, "Extraction of density-of-states in amorphous InGaZnO thin-film transistors from temperature stress studies," Current Applied Physics, vol. 14, pp. 1713-1717, 2014.
    [30] Charlene Chen, Katsumi Abe, Hideya Kumomi, and Jerzy Kanicki, "Density of States of a-InGaZnO From Temperature-Dependent Field-Effect Studies," IEEE Transactions on Electron Devices, vol. 56, pp. 1177-1183, 2009.
    [31] Yong Woo Jeon, Sungchul Kim, Sangwon Lee, Dong Myong Kim, Dae Hwan Kim, Jaechul Park, Chang Jung Kim, Ihun Song, Youngsoo Park, U. In Chung, Je-Hun Lee, Byung Du Ahn, Sei Yong Park, Jun-Hyun Park, and Joo Han Kim, "Subgap Density-of-States-Based Amorphous Oxide Thin Film Transistor Simulator (DeAOTS)," IEEE Transactions on Electron Devices, vol. 57, pp. 2988-3000, 2010.
    [32] Lee Sangwon, Park Sungwook, Kim Sungchul, Jeon Yongwoo, Jeon Kichan, Park Jun-Hyun, Park Jaechul, Song Ihun, Kim Chang Jung, Park Youngsoo, Kim Dong Myong, and Kim Dae Hwan, "Extraction of Subgap Density of States in Amorphous InGaZnO Thin-Film Transistors by Using Multifrequency Capacitance-Voltage Characteristics," IEEE Electron Device Letters, vol. 31, pp. 231-233, 2010.
    [33] Yongsik Kim, Sungchul Kim, Woojoon Kim, Minkyung Bae, Hyun Kwang Jeong, Dongsik Kong, Sunwoong Choi, Dong Myong Kim, and Dae Hwan Kim, "Amorphous InGaZnO Thin-Film Transistors-Part II: Modeling and Simulation of Negative Bias Illumination Stress-Induced Instability," IEEE Transactions on Electron Devices, vol. 59, pp. 2699-2706, 2012.
    [34] Yongsik Kim, Minkyung Bae, Woojoon Kim, Dongsik Kong, Hyun Kwang Jung, Hyungtak Kim, Sunwoong Kim, Dong Myong Kim, and Dae Hwan Kim, "Amorphous InGaZnO Thin-Film Transistors-Part I: Complete Extraction of Density of States Over the Full Subband-Gap Energy Range," IEEE Transactions on Electron Devices, vol. 59, pp. 2689-2698, 2012.
    [35] Minkyung Bae, Yongsik Kim, Sungchul Kim, Dong Myong Kim, and Dae Hwan Kim, "Extraction of Subgap Donor States in a-IGZO TFTs by Generation–Recombination Current Spectroscopy," IEEE Electron Device Letters, vol. 32, pp. 1248-1250, 2011.
    [36] Minkyung Bae, Yongsik Kim, Dongsik Kong, Hyun Kwang Jeong, Woojoon Kim, Jaehyeong Kim, Inseok Hur, Dong Myong Kim, and Dae Hwan Kim, "Analytical Models for Drain Current and Gate Capacitance in Amorphous InGaZnO Thin-Film Transistors With Effective Carrier Density," IEEE Electron Device Letters, vol. 32, pp. 1546-1548, 2011.
    [37] Youn-Gyoung Chang, Hee Sung Lee, Kyunghee Choi, and Seongil Im, "Capacitance-Voltage Measurement With Photon Probe to Quantify the Trap Density of States in Amorphous Thin-Film Transistors," IEEE Electron Device Letters, vol. 33, pp. 1015-1017, 2012.
    [38] Sungju Choi, Hyeongjung Kim, Chunhyung Jo, Hyun-Suk Kim, Sung-Jin Choi, Dong Myong Kim, Jozeph Park, and Dae Hwan Kim, "A Study on the Degradation of In-Ga-Zn-O Thin-Film Transistors Under Current Stress by Local Variations in Density of States and Trapped Charge Distribution," IEEE Electron Device Letters, vol. 36, pp. 690-692, 2015.
    [39] J. T. Jang, J. Park, B. D. Ahn, D. M. Kim, S. J. Choi, H. S. Kim, and D. H. Kim, "Study on the photoresponse of amorphous In-Ga-Zn-O and zinc oxynitride semiconductor devices by the extraction of sub-gap-state distribution and device simulation," ACS Applied Materials & Interfaces, vol. 7, pp. 15570-15577, 2015.
    [40] Jun Tae Jang, Jozeph Park, Byung Du Ahn, Dong Myong Kim, Sung-Jin Choi, Hyun-Suk Kim, and Dae Hwan Kim, "Effect of direct current sputtering power on the behavior of amorphous indium-gallium-zinc-oxide thin-film transistors under negative bias illumination stress: A combination of experimental analyses and device simulation," Applied Physics Letters, vol. 106, p. 123505, 2015.
    [41] Kichan Jeon, Changjung Kim, Ihun Song, Jaechul Park, Sunil Kim, Sangwook Kim, Youngsoo Park, Jun-Hyun Park, Sangwon Lee, Dong Myong Kim, and Dae Hwan Kim, "Modeling of amorphous InGaZnO thin-film transistors based on the density of states extracted from the optical response of capacitance-voltage characteristics," Applied Physics Letters, vol. 93, p. 182102, 2008.
    [42] Park Jun-Hyun, Jeon Kichan, Lee Sangwon, Kim Sunil, Kim Sangwook, Song Ihun, Kim Chang Jung, Park Jaechul, Park Youngsoo, Kim Dong Myong, and Kim Dae Hwan, "Extraction of Density of States in Amorphous GaInZnO Thin-Film Transistors by Combining an Optical Charge Pumping and Capacitance-Voltage Characteristics," IEEE Electron Device Letters, vol. 29, pp. 1292-1295, 2008.
    [43] K. Lee, M. S. Oh, S. J. Mun, K. H. Lee, T. W. Ha, J. H. Kim, S. H. Park, C. S. Hwang, B. H. Lee, M. M. Sung, and S. Im, "Interfacial trap density-of-states in pentacene- and ZnO-based thin-film transistors measured via novel photo-excited charge-collection spectroscopy," Advance Materials, vol. 22, pp. 3260-3265, 2010.
    [44] Sangwon Lee, Yong Woo Jeon, Sungchul Kim, Dongsik Kong, Dae Hwan Kim, and Dong Myong Kim, "Comparative study of quasi-static and normal capacitance–voltage characteristics in amorphous Indium-Gallium-Zinc-Oxide thin film transistors," Solid-State Electronics, vol. 56, pp. 95-99, 2011.
    [45] Sang Yeol Lee, Do Hyung Kim, Eugene Chong, Yong Woo Jeon, and Dae Hwan Kim, "Effect of channel thickness on density of states in amorphous InGaZnO thin film transistor," Applied Physics Letters, vol. 98, p. 122105, 2011.
    [46] Min Ki Ryu, Shinhyuk Yang, Sang-Hee Ko Park, Chi-Sun Hwang, and Jae Kyeong Jeong, "High performance thin film transistor with cosputtered amorphous Zn–In–Sn–O channel: Combinatorial approach," Applied Physics Letters, vol. 95, p. 072104, 2009.
    [47] M. F. Chang, P. T. Lee, S. P. Mcalister, and A. Chin, "Low Subthreshold Swing HfLaO/Pentacene Organic Thin-Film Transistors," IEEE Electron Device Letters, vol. 29, pp. 215-217, 2008.
    [48] Yoon Jang Chung, Jeong Hwan Kim, Un Ki Kim, Myungkwan Ryu, Sang Yoon Lee, and Cheol Seong Hwang, "Study on the Existence of Abnormal Hysteresis in Hf-In-Zn-O Thin Film Transistors under Illumination," Electrochemical and Solid-State Letters, vol. 14, pp. H300-H302, 2011.
    [49] Hai-Qin Huang, Feng-Juan Liu, Jian Sun, Jian-Wei Zhao, Zuo-Fu Hu, Zhen-Jun Li, and Xi-Qing Zhang, "Influence of the active layer thickness on the electrical properties of ZnO thin film transistors fabricated by radio frequency magnetron sputtering," Journal of Physics and Chemistry of Solids, vol. 72, pp. 1393-1396, 2011.
    [50] T. Kamiya, K. Nomura, and H. Hosono, "Present status of amorphous In-Ga-Zn-O thin-film transistors," Science and Technology of Advanced Materials, vol. 11, p. 044305, 2010.
    [51] Cam Phu Thi Nguyen, Jayapal Raja, Sunbo Kim, Kyungsoo Jang, Anh Huy Tuan Le, Youn-Jung Lee, and Junsin Yi, "Enhanced electrical properties of oxide semiconductor thin-film transistors with high conductivity thin layer insertion for the channel region," Applied Surface Science, vol. 396, pp. 1472-1477, 2017.
    [52] Liang-Yu Su, Hsin-Ying Lin, Huang-Kai Lin, Sung-Li Wang, Lung-Han Peng, and Jianjang Huang, "Characterizations of Amorphous IGZO Thin-Film Transistors With Low Subthreshold Swing," IEEE Electron Device Letters, vol. 32, pp. 1245-1247, 2011.
    [53] Jun Yong Bak and Sung Min Yoon, "High-performance transparent, all-oxide nonvolatile charge trap memory transistor using In-Ga-Zn-O channel and ZnO trap layer," Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 32, p. 060604, 2014.
    [54] Jun Yong Bak, Min-Ki Ryu, Sang Hee Ko Park, Chi-Sun Hwang, and Sung Min Yoon, "Impact of Charge-Trap Layer Conductivity Control on Device Performances of Top-Gate Memory Thin-Film Transistors Using IGZO Channel and ZnO Charge-Trap Layer," IEEE Transactions on Electron Devices, vol. 61, pp. 2404-2411, 2014.
    [55] Shi-Bing Qian, Wen-Peng Zhang, Wen-Jun Liu, and Shi-Jin Ding, "Electrically programmable-erasable In-Ga-Zn-O thin-film transistor memory with atomic-layer-deposited Al2O3/Pt nanocrystals/Al2O3 gate stack," AIP Advances, vol. 5, p. 127203, 2015.
    [56] Dipti Gupta, Manish Anand, Seong-Wan Ryu, Yang-Kyu Choi, and Seunghyup Yoo, "Nonvolatile memory based on sol-gel ZnO thin-film transistors with Ag nanoparticles embedded in the ZnO/gate insulator interface," Applied Physics Letters, vol. 93, p. 224106, 2008.
    [57] Jim-Long Her, Fa-Hsyang Chen, Ching-Hung Chen, and Tung-Ming Pan, "Electrical characteristics of gallium–indium–zinc oxide thin-film transistor non-volatile memory with Sm2O3 and SmTiO3charge trapping layers," RSC Advances, vol. 5, pp. 8566-8570, 2015.
    [58] So-Jung Kim, Min-Ji Park, Da-Jeong Yun, Won-Ho Lee, Gi-Heon Kim, and Sung-Min Yoon, "High Performance and Stable Flexible Memory Thin-Film Transistors Using In–Ga–Zn–O Channel and ZnO Charge-Trap Layers on Poly(Ethylene Naphthalate) Substrate," IEEE Transactions on Electron Devices, vol. 63, pp. 1557-1564, 2016.
    [59] Tung-Ming Pan, Ching-Hung Chen, Yi-Hsiang Hu, and Jim-Long Her, "Effect of Ti Content on the Structural and Electrical Characteristics of ErTixOy Charge Storage Layer in InGaZnO Thin-Film Transistor Nonvolatile Memories," IEEE Transactions on Electron Devices, vol. 63, pp. 1539-1544, 2016.
    [60] Tung-Ming Pan, Ching-Hung Chen, Yi-Hsiang Hu, Hung-Chun Wang, and Jim-Long Her, "Comparison of Structural and Electrical Properties of Er2O3 and ErTixOyCharge-Trapping Layers for InGaZnO Thin-Film Transistor Nonvolatile Memory Devices," IEEE Electron Device Letters, vol. 37, pp. 179-181, 2016.
    [61] Jayapal Raja, Cam Phu Thi Nguyen, Changmin Lee, Nagarajan Balaji, Somenath Chatterjee, Kyungsoo Jang, Hyoungsub Kim, and Junsin Yi, "Improved Data Retention of InSnZnO Nonvolatile Memory by H2O2 Treated Al2O3 Tunneling Layer: A Cost-Effective Method," IEEE Electron Device Letters, vol. 37, pp. 1272-1275, 2016.
    [62] G. H. Seo, D. J. Yun, W. H. Lee, and S. M. Yoon, "Atomic-layer-deposition-assisted ZnO nanoparticles for oxide charge-trap memory thin-film transistors," Nanotechnology, vol. 28, p. 075202, 2017.
    [63] Wen-Peng Zhang, Shi-Bing Qian, Wen-Jun Liu, Shi-Jin Ding, and David Wei Zhang, "Novel Multi-Level Cell TFT Memory With an In–Ga–Zn-O Charge Storage Layer and Channel," IEEE Electron Device Letters, vol. 36, pp. 1021-1023, 2015.
    [64] Sun Chen, Xing-Mei Cui, Shi-Jin Ding, Qing-Qing Sun, Tomas Nyberg, Shi-Li Zhang, and Wei Zhang, "Novel Zn-Doped Al2O3 Charge Storage Medium for Light-Erasable In–Ga–Zn–O TFT Memory," IEEE Electron Device Letters, vol. 34, pp. 1008-1010, 2013.
    [65] Xing-Mei Cui, Sun Chen, Shi-Jin Ding, Qing-Qing Sun, Tomas Nyberg, Shi-Li Zhang, and Wei Zhang, "Unique UV-Erasable In-Ga-Zn-O TFT Memory With Self-Assembled Pt Nanocrystals," IEEE Electron Device Letters, vol. 34, pp. 1011-1013, 2013.
    [66] Wei-Tsung Chen and Hsiao-Wen Zan, "High-Performance Light-Erasable Memory and Real-Time Ultraviolet Detector Based on Unannealed Indium-Gallium-Zinc-Oxide Thin-Film Transistor," IEEE Electron Device Letters, vol. 33, pp. 77-79, 2012.
    [67] Lan Yue, Hai-Feng Pu, Hong-Lei Li, Shu-Jian Pang, and Qun Zhang, "Effect of active layer thickness on device performance of a-LZTO thin-film transistors," Superlattices and Microstructures, vol. 57, pp. 123-128, 2013.
    [68] A. Abliz, C. W. Huang, J. Wang, L. Xu, L. Liao, X. Xiao, W. W. Wu, Z. Fan, C. Jiang, J. Li, S. Guo, C. Liu, and T. Guo, "Rational Design of ZnO:H/ZnO Bilayer Structure for High-Performance Thin-Film Transistors," ACS Applied Materials & Interfaces, vol. 8, pp. 7862-7868, 2016.
    [69] L. Xu, Q. Chen, L. Liao, X. Liu, T. C. Chang, K. C. Chang, T. M. Tsai, C. Jiang, J. Wang, and J. Li, "Rational Hydrogenation for Enhanced Mobility and High Reliability on ZnO-based Thin Film Transistors: From Simulation to Experiment," ACS Applied Materials & Interfaces, vol. 8, pp. 5408-5415, 2016.
    [70] You-Hang Wang, Qian Ma, Li-Li Zheng, Wen-Jun Liu, Shi-Jin Ding, Hong-Liang Lu, and David Wei Zhang, "Performance Improvement of Atomic Layer-Deposited ZnO/Al2O3 Thin-Film Transistors by Low-Temperature Annealing in Air," IEEE Transactions on Electron Devices, vol. 63, pp. 1893-1898, 2016.
    [71] Jong-Chang Woo, Chang-Auck Choi, and Chang-Il Kim, "Dry Etching Characteristics of Indium Zinc Oxide Thin Films in Adaptive Coupled Plasma," Transactions on Electrical and Electronic Materials, vol. 14, pp. 216-220, 2013.
    [72] Y. J. Jeong, T. K. An, D. J. Yun, L. H. Kim, S. Park, Y. Kim, S. Nam, K. H. Lee, S. H. Kim, J. Jang, and C. E. Park, "Photo-Patternable ZnO Thin Films Based on Cross-Linked Zinc Acrylate for Organic/Inorganic Hybrid Complementary Inverters," ACS Appled Materials & Interfaces, vol. 8, pp. 5499-5508, 2016.
    [73] You Seung Rim Hyun Soo Lim, Dong Lim Kim, Woong Hee Jeong, and Hyun Jae Kim, "Carrier-Suppressing Effect of Mg in Solution-Processed Zn-Sn-O Thin-Film Transistors," Electrochemical and Solid-State Letters, vol. 15, pp. H78-H80, 2012.
    [74] J. B. You, X. W. Zhang, S. G. Zhang, H. R. Tan, J. Ying, Z. G. Yin, Q. S. Zhu, and Paul K. Chu, "Electroluminescence behavior of ZnO/Si heterojunctions: Energy band alignment and interfacial microstructure," Journal of Applied Physics, vol. 107, p. 083701, 2010.

    無法下載圖示 校內:2022-08-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE