簡易檢索 / 詳目顯示

研究生: 王馨平
Wang, Hsin-Ping
論文名稱: 加密貨幣市場投資者行為之研究
A Study of Trading Behavior in Cryptocurrency Markets
指導教授: 廖麗凱
Liao, Li-Kai
學位類別: 碩士
Master
系所名稱: 管理學院 - 會計學系
Department of Accountancy
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 55
中文關鍵詞: 加密貨幣市場比特幣以太幣日本加密貨幣之合法投資者情緒波動叢聚槓桿效果
外文關鍵詞: Bitcoin, Ethereum, cryptocurrencies, legalization of cryptocurrencies in Japan, investors sentiment, volatility, leverage effect of volatility
相關次數: 點閱:136下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以比特幣和以太幣為例,探討投資者情緒對加密貨幣市場之影響,並與標準普爾指數及那斯達克指數等一般權益市場指標加以比較。實證結果的發現如下:(一)加密貨幣市場與網路搜尋數量呈現顯著相關,其中尤以Google搜尋引擎較百度搜尋引擎對加密貨幣市場較大。(二)加密貨幣於2017年4月1日於日本地區正式合法化對加密貨幣市場之交易數量為顯著正面影響。(三)加密貨幣投資者在週末會進行較少的投資。(四)比特幣的投資者於假期期間會進行較多的投資。(五)比特幣和以太幣皆存在波動叢聚現象,但不具波動不對稱性,代表好壞消息對加密貨幣市場之影響力相當。

    This study discusses investors’ behavior and compares several characteristics of cryptocurrencies markets to general equity markets. The findings show that (1) cryptocurrency returns are significantly related to Internet era. The searching volume of Google search engine presents a stronger influence than Baidu. (2) Legalization of cryptocurrencies has significantly positive impact on the trading volume of cryptocurrencies. (3) Cryptocurrency investors would do less investing during weekends. (4) Bitcoin investors will do more investments in holidays. (4) Volatility clustering phenomenon exists in both cryptocurrencies markets and general equity markets, but the asymmetric effect of volatility does not exist in cryptocurrency markets, which represents that the influence of good news and bad news for cryptocurrencies markets are identical.

    Abstract ⅰⅰ Ⅰ. Introduction 1 Ⅱ. Literature Review 2 2.1 The Principle of Cryptocurrencies 2 2.2 Cryptocurrency Markets 4 2.3 The Relationship Between Price and Volume 5 2.4 Investors’ Sentiment 7 Ⅲ. Data 8 3.1 Dataset 8 3.2 The Calculation of Return and Monte Carlo Simulation 10 3.3 Data Transformation and Unit Root Test 11 Ⅳ. Methodology 15 4.1 Vector Autoregression (VAR) 15 4.2 Granger Causality test 16 4.3 Ordinary Least Squares (OLS) 17 4.4 Generalized Autoregression Conditional Heteroskedasticity (GARCH) 18 4.5 TGARCH and EGARCH 20 Ⅴ. Empirical Results 21 5.1 Descriptive Statistics and Monte Carlo Simulation 21 5.2 Correlation 26 5.3 Internet era and Cryptocurrencies 27 5.4 Investors’ Sentiment of Cryptocurrencies 38 5.5 Volatility of Cryptocurrencies 40 Ⅵ. Conclusion 50 References 52

    Alanyali, M., Moat, H. S., & Preis, T. (2013). Quantifying the relationship between financial news and the stock market. Scientific reports, 3, 3578.
    Bartos, J. (2015). Does Bitcoin follow the hypothesis of efficient market?. International Journal of Economic Sciences, 4(2), 10-23.
    Baur, D. G., Hong, K., & Lee, A. D. (2017). Bitcoin: Medium of Exchange or Speculative Assets?. Journal of International Financial Markets, Institutions and Money.
    Berument, M. H., & Dogan, N. (2011). Stock market return and volatility relationship: Monday effect. International Journal of Economic Perspectives, 5(2), 175.
    Böhme, R., Christin, N., Edelman, B., & Moore, T. (2015). Bitcoin: Economics, Technology, and Governance. Journal of Economic Perspectives, 29(2), 213-238.
    Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of econometrics, 31(3), 307-327.
    Bouoiyour, J., & Selmi, R. (2015). Bitcoin Price: Is it really that New Round of Volatility can be on way?. University Library of Munich, Germany.
    Bouoiyour, J., Selmi, R., & Tiwari, A. K. (2015). Is Bitcoin business income or speculative foolery? New ideas through an improved frequency domain analysis. Annals of Financial Economics, 10(01), 1550002.
    Bouoiyour, J., & Selmi, R. (2016). Bitcoin: a beginning of a new phase?'. Economics Bulletin, 36(3), 1430-1440.
    Bouri, E., Azzi, G., & Dyhrberg, A. H. (2017). On the return-volatility relationship in the Bitcoin market around the price crash of 2013. Economics-The Open-Access, Open-Assessment E-Journal, 11, 1-16.
    Boyer, B. H., Kumagai, T., & Yuan, K. (2006). How do crises spread? Evidence from accessible and inaccessible stock indices. The Journal of Finance, 61(2), 957-1003.
    Brandvold, M., Molnár, P., Vagstad, K., & Valstad, O. C. A. (2015). Price discovery on Bitcoin exchanges. Journal of International Financial Markets, Institutions and Money, 36, 18-35.
    Chang, E. C., Cheng, J. W., & Khorana, A. (2000). An examination of herd behavior in equity markets: An international perspective. Journal of Banking & Finance, 24(10), 1651-1679.
    Chen, T. C., & Chien, C. C. (2011). Size effect in January and cultural influences in an emerging stock market: The perspective of behavioral finance. Pacific-Basin Finance Journal, 19(2), 208-229.
    Chiang, T. C., & Zheng, D. (2010). An empirical analysis of herd behavior in global stock markets. Journal of Banking & Finance, 34(8), 1911-1921.
    Choi, K. H., Jiang, Z. H., Kang, S. H., & Yoon, S. M. (2012). Relationship between trading volume and asymmetric volatility in the Korean stock market. Modern Economy, 3(05), 584.
    Ciccone, S. J. (2011). Investor optimism, false hopes and the January effect. Journal of Behavioral Finance, 12(3), 158-168.
    Decourt, R. F., Chohan, U. W., & Perugini, M. L. (2017). Bitcoin returns and the Monday Effect. In Conference Proceedings of the 14th Convibra: Administração (Brazil).
    Demirer, R., & Kutan, A. M. (2006). Does herding behavior exist in Chinese stock markets?. Journal of international Financial markets, institutions and money, 16(2), 123-142.
    Drake, M. S., Roulstone, D. T., & Thornock, J. R. (2012). Investor information demand: Evidence from Google searches around earnings announcements. Journal of Accounting Research, 50(4), 1001-1040.
    Dwyer, G. P. (2015). The economics of Bitcoin and similar private digital currencies. Journal of Financial Stability, 17, 81-91.
    Dyhrberg, A. H. (2016 a). Bitcoin, gold and the dollar–A GARCH volatility analysis. Finance Research Letters, 16, 85-92.
    Dyhrberg, A. H. (2016 b). Hedging capabilities of bitcoin. Is it the virtual gold?. Finance Research Letters, 16, 139-144.
    Fry, J., & Cheah, E. T. (2016). Negative bubbles and shocks in cryptocurrency markets. International Review of Financial Analysis, 47, 343-352.
    Gandal, N., & Halaburda, H. (2014). Competition in the cryptocurrency market.
    Glaser, F., Zimmermann, K., Haferkorn, M., Weber, M., & Siering, M. (2014). Bitcoin-asset or currency? revealing users' hidden intentions.
    Girard, E., & Biswas, R. (2007). Trading volume and market volatility: Developed versus emerging stock markets. Financial Review, 42(3), 429-459.
    Gronwald, M. (2014). The Economics of Bitcoins--Market Characteristics and Price Jumps.
    Hill, R. C., Griffiths, W. E., & Lim, G. C. (2008). Principles of econometrics (Vol. 5). Hoboken, NJ: Wiley.
    Hurlburt, G. F., & Bojanova, I. (2014). Bitcoin: Benefit or curse?. IT Professional, 16(3), 10-15.
    Katsiampa, P. (2017). Volatility estimation for Bitcoin: A comparison of GARCH models. Economics Letters, 158, 3-6.
    Kim, K. A., & Nofsinger, J. R. (2008). Behavioral finance in Asia. Pacific-Basin Finance Journal, 16(1-2), 1-7.
    Keirns, G. (2017, March 31). Japan’s Bitcoin law goes into effect tomorrow. Coindesk. Retrieved from: https://www.coindesk.com/japan-bitcoin-law-effect-tomorrow/
    Kristoufek, L. (2013). BitCoin meets Google Trends and Wikipedia: Quantifying the relationship between phenomena of the Internet era. Scientific reports, 3, 3415.ol
    Kristoufek, L. (2015). What are the main drivers of the Bitcoin price? Evidence from wavelet coherence analysis. PloS one, 10(4), e0123923.
    Latif, S. R., Mohd, M. A., Amin, M. N. M., & Mohamad, A. I. (2017). Testing the weak form of efficient market in cryptocurrency. Journal of Engineering and Applied Sciences, 12(9), 2285-2288.
    Lee, B. S., & Rui, O. M. (2002). The dynamic relationship between stock returns and trading volume: Domestic and cross-country evidence. Journal of Banking & Finance, 26(1), 51-78.
    McGowan, C. B. (2012). The relationship between price and volume for the Russian trading system. The International Business & Economics Research Journal (Online), 11(9), 963.
    Nadarajah, S., & Chu, J. (2017). On the inefficiency of Bitcoin. Economics Letters, 150, 6-9.
    Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Unpublished manuscript. Retrieved from: https://bitcoin.org/bitcoin.pdf
    Nelson, D. B., & Cao, C. Q. (1992). Inequality constraints in the univariate GARCH model. Journal of Business & Economic Statistics, 10(2), 229-235.
    Nofsinger, J. R., & Sias, R. W. (1999). Herding and feedback trading by institutional and individual investors. The Journal of finance, 54(6), 2263-2295.
    Phillips, P. C., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335-346.
    Pisedtasalasai, A., & Gunasekarage, A. (2007). Causal and dynamic relationships among stock returns, return volatility and trading volume: Evidence from emerging markets in South-East Asia. Asia-Pacific Financial Markets, 14(4), 277.
    Preis, T., Moat, H. S., & Stanley, H. E. (2013). Quantifying trading behavior in financial markets using Google Trends. Scientific reports, 3, srep01684.
    Russolillo, S., & Jeong, E.Y., (2017, December 12). The force behind Bitcoin’s Meteoric Rise: Millions of Asian Investors. The Wall Street Journal. Retrieved from: https://www.wsj.com/articles/the-force-behind-bitcoins-meteoric-rise-millions-of-asian-investors-1513074750
    Tapscott, D., & Tapscott, A. (2016). Blockchain revolution: how the technology behind bitcoin is changing money, business, and the world. Penguin.
    Urquhart, A. (2016). The inefficiency of Bitcoin. Economics Letters, 148, 80-82.
    Wang, D. H., Suo, Y. Y., Yu, X. W., & Lei, M. (2013). Price–volume cross-correlation analysis of CSI300 index futures. Physica A: Statistical Mechanics and its Applications, 392(5), 1172-1179.
    Yermack, D. (2015). Is Bitcoin a real currency? An economic appraisal. In Handbook of digital currency (pp. 31-43).
    Zhai, W., Kazemi, H. S., He, J., & Cai, J. (2013). Stock Market Volatility, Speculative Short Sellers and Weekend Effect: International Evidence. Journal of Financial Risk Management, 2(3), 47-54.
    Zhang, Y., Feng, L., Jin, X., Shen, D., Xiong, X., & Zhang, W. (2014). Internet information arrival and volatility of SME PRICE INDEX. Physica A: Statistical Mechanics and its Applications, 399, 70-74.

    下載圖示 校內:2023-06-01公開
    校外:2023-06-01公開
    QR CODE