| 研究生: |
黃耑翔 Huang, Tuan-Hsiang |
|---|---|
| 論文名稱: |
利⽤多重尺度電漿⼦結構提升光熱效應 Enhancement of photothermal effect by using multi-scale plasmonic structure |
| 指導教授: |
張晉愷
Chang, Chin-Kai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 139 |
| 中文關鍵詞: | 多重尺度微奈米結構 、氮化鈦 、局部表面電漿共振 、光熱效應 、半導體相關製程 |
| 外文關鍵詞: | multi-scale micro-nano structures, titanium nitride, local surface plasmon resonance, photo-thermal conversion, semiconductor-related processes |
| 相關次數: | 點閱:55 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
透過局部表面電漿共振所激發的光熱效應在光熱領域近年來因為其巨大的發展潛力受到許多關注與研究。未來若是可以利用更有效率的光熱轉換應用於太陽能轉換上的相關應用上,在能源短缺的未來絕對是有相當的前瞻性。但目前對於較寬頻的光源光熱轉換上的效率和大面積製造電漿子結構仍然是一個巨大的挑戰需要克服。在本研究中將提出一個具有多重尺度的電漿子奈米結構作為光熱基板,在此基板中利用許多半導體相關的微奈米製程技術,像是黃光微影、乾蝕刻、金屬輔助化學蝕刻等,將微米等級與奈米等級的結構進行結合。最後將氮化鈦濺鍍在這個多尺度結構上作為光輻射和熱能產生之間的介質。以上描述得多尺度的金屬奈米結構將在產生光熱效應中發揮關鍵作用。這種光熱效應特性可以通過局部表面電漿共振來增強使更多輻射能量轉變成熱能。改變不同的微米與奈米結構形貌來研究其光熱效應。在微米結構上設計了兩種側壁類型,分別是錐形(taper)與垂直(vertical)側壁,而在奈米結構上則是透過不同的金屬輔助化學蝕刻深度製作出多孔材質(porous texture)與凹槽(trench)型態。本研究所製作出的光熱基板最後也透過光譜儀與熱像儀量測其光學的反射率與熱量的溫度表現。從實驗量測結果可以得知具有多重尺度的電漿子結構具有較低的光學反射率和明顯的升溫表現。由此可知本研究的光熱基板確實有因為多重尺度的結構使光熱效應增加。特別是錐形側壁類型的微米結構搭配凹槽型態的奈米結構下的光熱基板從反射率與熱像儀看出有最佳的光熱效應。和氮化鈦薄膜相比,多重尺度電漿子結構的升溫表現是氮化鈦薄膜的3.6倍。因此未來可以透過改變微米與奈米結構以此找出最佳的設計,使光熱基板在寬頻光譜下具有高效率的光熱轉換。
Photothermal effect of material has attracted plenty of attention because of its versatile application. For example, solar energy can be well converted to the generation of heat for seawater desalination by excellent photothermal effect. However, the conversion efficiency is still a challenge for the broadband light source. In this study, the multi-scale plasmonic structures were proposed as a photothermal substrate, which integrated the microstructure with the nanostructure. The microstructure and nanostructure were obtained by Litho-etching and metal-assisted chemical etching technologies, respectively. The titanium nitride was deposited on this multi-scale structure as the mediator between the irradiation and generation of heat. The metallic nanostructure on the multi-scale structure will play a crucial role in generating thermoplasmonic effect. This thermoplasmonic property can be enhanced by the local surface plasmon resonance. Moreover, the type (vertical or taper shapes) of microstructure and morphology (porous texture or trench) of nanostructure also were altered to investigate the photothermal effect. The multi-scale plasmonic structures experimentally demonstrated that lower optical reflection can be converted to high photothermal efficiency as comparing the titanium nitride film. These engineering multi-scale structures appear a remarkable potential for use as a non-classical photothermal device.
1. Jauffred, L., et al., Plasmonic heating of nanostructures. Chemical reviews, 2019.119(13): p. 8087-8130.
2. Govorov, A., W. Zhang, and T. Skeini, Nanoscale Res. Lett. 2006, 1, 84; b) AO Govorov, HH Richardson. Nano Today, 2007. 2: p. 30.
3. Baffou, G. and R. Quidant, Thermo‐plasmonics: using metallic nanostructures as nano‐sources of heat. Laser & Photonics Reviews, 2013. 7(2): p. 171-187.
4. Jansen, H., et al., The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control. Journal of Micromechanics and Microengineering, 1995.5(2): p. 115.
5. Li, W., et al., Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Advanced Materials, 2014. 26(47): p. 7959-7965.
6. Aydin, K., et al., Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nature communications, 2011. 2(1): p.517.
7. Ishii, S., R.P. Sugavaneshwar, and T. Nagao, Titanium nitride nanoparticles as plasmonic solar heat transducers. The Journal of Physical Chemistry C, 2016.120(4): p. 2343-2348.
8. Wang, X., et al., Investigation of photothermal heating enabled by plasmonic nanofluids for direct solar steam generation. Solar Energy, 2017. 157: p. 35-46.
9. Li, Y., et al., High‐Entropy‐Alloy‐Nanoparticles Enabled Wood Evaporator for Efficient Photothermal Conversion and Sustainable Solar Desalination. Advanced Energy Materials, 2022. 12(47): p. 2203057.
10. Wang, F., et al., Plasmonic harvesting of light energy for Suzuki coupling reactions. Journal of the American Chemical Society, 2013. 135(15): p. 5588-5601.
11. Yu, M.-J., et al., Plasmon-enhanced solar-driven hydrogen evolution using titanium nitride metasurface broadband absorbers. ACS Photonics, 2021. 8(11): p. 3125-3132.
12. Zhou, L., et al., 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nature Photonics, 2016. 10(6): p. 393-398.
13. Atwater, H.A. and A. Polman, Plasmonics for improved photovoltaic devices. Nature materials, 2010. 9(3): p. 205-213.
14. Naldoni, A., et al., Solar thermoplasmonic nanofurnace for high-temperature heterogeneous catalysis. Nano Letters, 2020. 20(5): p. 3663-3672.
15. Kumar, A., et al., Plasmonically coupled nanoreactors for NIR-light-mediated remote stimulation of catalysis in living cells. ACS Catalysis, 2018. 9(2): p. 977-990.
16. Aslam, U., S. Chavez, and S. Linic, Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nature nanotechnology, 2017. 12(10): p.1000-1005.
17. Jørgensen, J.T., et al., Single particle and PET-based platform for identifying optimal plasmonic nano-heaters for photothermal cancer therapy. Scientific Reports, 2016.6(1): p. 1-10.
18. Chen, C.-W., et al., Plasmon-enhanced photodynamic cancer therapy by upconversion nanoparticles conjugated with Au nanorods. ACS applied materials & interfaces, 2016. 8(47): p. 32108-32119.
19. Wang, J., et al., Gold nanoframeworks with mesopores for Raman–photoacoustic imaging and photo‐chemo tumor therapy in the second near‐infrared biowindow. Advanced functional materials, 2020. 30(9): p. 1908825.
20. Zhu, M., et al., Plasmonic wood for high‐efficiency solar steam generation. Advanced Energy Materials, 2018. 8(4): p. 1701028.
21. Farid, M.U., J.A. Kharraz, and A.K. An, Plasmonic titanium nitride nano-enabled membranes with high structural stability for efficient photothermal desalination. ACS Applied Materials & Interfaces, 2021. 13(3): p. 3805-3815.
22. Karami, S., et al., Materials and structures engineering of sun-light absorbers for efficient direct solar steam generation. Solar Energy, 2021. 225: p. 747-772.
23. Li, D. and H. Wang, Recent developments in reverse osmosis desalination membranes. Journal of Materials Chemistry, 2010. 20(22): p. 4551-4566.
24. A Shirazi, M.M. and A. Kargari, A review on applications of membrane distillation(MD) process for wastewater treatment. Journal of Membrane Science and Research, 2015. 1(3): p. 101-112.
25. Tee, S.Y., et al., Advances in photothermal nanomaterials for biomedical, environmental and energy applications. Nanoscale, 2021. 13(34): p. 14268-14286.
26. 洪健雄, et al., 電漿子學原理與應用. 真空科技, 2012. 25(1): p. 9-23.
27. Zhang, J., L. Zhang, and W. Xu, Surface plasmon polaritons: physics and applications. Journal of Physics D: Applied Physics, 2012. 45(11): p. 113001.
28. 邱國斌 and 蔡定平, 金屬表面電漿簡介. 物理雙月刊, 2006. 28: p. 472-485.
29. Bohren, C.F. and D.R. Huffman, Absorption and scattering of light by small particles. 2008: John Wiley & Sons.
30. Zhou, L., et al., Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Science advances, 2016. 2(4): p. e1501227.
31. Guler, U., V.M. Shalaev, and A. Boltasseva, Nanoparticle plasmonics: going practical with transition metal nitrides. Materials Today, 2015. 18(4): p. 227-237.
32. Link, S. and M.A. El-Sayed, Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. International reviews in physical chemistry, 2000. 19(3): p. 409-453.
33. Landau, L.D. and E.M. Lifshitz, Fluid Mechanics: Landau and Lifshitz: Course of Theoretical Physics, Volume 6. Vol. 6. 2013: Elsevier.
34. Hogan, N.J., et al., Nanoparticles heat through light localization. Nano letters, 2014. 14(8): p. 4640-4645.
35. Ma, H., P.M. Bendix, and L.B. Oddershede, Large-scale orientation dependent heating from a single irradiated gold nanorod. Nano letters, 2012. 12(8): p. 3954-3960.
36. Zhu, G., et al., Constructing black titania with unique nanocage structure for solar desalination. ACS applied materials & interfaces, 2016. 8(46): p. 31716-31721.
37. Wang, J., et al., High‐performance photothermal conversion of narrow‐bandgap Ti2O3 nanoparticles. Advanced Materials, 2017. 29(3): p. 1603730.
38. Ishii, S., et al., Extreme thermal anisotropy in high-aspect-ratio titanium nitride nanostructures for efficient photothermal heating. Nanophotonics, 2021. 10(5): p.1487-1494.
39. 核心設施中心 微奈米科技組 e 化系統.
40. Zhang, J.X. and K. Hoshino, Fundamentals of nano/microfabrication and scale effect. Molecular Sensors and Nanodevices, 2019: p. 43-111.
41. Kuba, J., et al., Advanced cryo‐tomography workflow developments–correlative microscopy, milling automation and cryo‐lift‐out. Journal of microscopy, 2021.281(2): p. 112-124.
42. Ayari-Kanoun, A., et al., Silicon nanostructures with very large negatively tapered profile by inductively coupled plasma-RIE. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2016. 34(6): p. 06KD01.
43. 林冠宇, et al., 電漿深蝕刻設備及其製程技術. 機械工業雜誌, 2018(426): p. 55-61.
44. Roxhed, N., P. Griss, and G. Stemme, A method for tapered deep reactive ion etchingusing a modified Bosch process. Journal of Micromechanics and Microengineering, 2007. 17(5): p. 1087.
45. Bai, Y., et al., Tailoring film agglomeration for preparation of silver nanoparticles with controlled morphology. Materials & Design, 2016. 103: p. 315-320.
46. Bai, Y., et al., Elimination of small-sized Ag nanoparticles via rapid thermal annealing for high efficiency light trapping structure. Applied surface science, 2014. 315: p. 1-7.
47. Huang, Z., et al., Metal‐assisted chemical etching of silicon: a review: in memory of Prof. Ulrich Gösele. Advanced materials, 2011. 23(2): p. 285-308.
48. Chartier, C., S. Bastide, and C. Lévy-Clément, Metal-assisted chemical etching of silicon in HF–H2O2. Electrochimica Acta, 2008. 53(17): p. 5509-5516.
49. Fang, H., et al., Silver catalysis in the fabrication of silicon nanowire arrays. Nanotechnology, 2006. 17(15): p. 3768.
50. Lee, C.-L., et al., Pore formation in silicon by wet etching using micrometre-sized metal particles as catalysts. Journal of materials chemistry, 2008. 18(9): p. 1015-1020.
51. micro resist technology.
52. Jung, K., et al., Parameter study for silicon grass formation in Bosch process. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2010. 28(1): p. 143-148.
53. Lee, B.-S., D.-Z. Lin, and T.-J. Yen, A low-cost, highly-stable surface enhanced Raman scattering substrate by Si nanowire arrays decorated with Au nanoparticles and Au backplate. Scientific Reports, 2017. 7(1): p. 1-7.
54. Raguin, D.H. and G.M. Morris, Antireflection structured surfaces for the infrared spectral region. Applied optics, 1993. 32(7): p. 1154-1167.
55. Vynck, K., et al., Photon management in two-dimensional disordered media. Nature materials, 2012. 11(12): p. 1017-1022.
56. Bozzola, A., Marco Liscidini, and Lucio Claudio Andreani., Broadband light trapping with disordered photonic structures in thin-film silicon solar cells. Progress in Photovoltaics: Research and Applications, 2014. 12(12): p. 1237-1245.