簡易檢索 / 詳目顯示

研究生: 盧建元
Lu, Chien-Yuan
論文名稱: 氧化鋅奈米線光電及感測器元件之研究
The study of ZnO nanowires-based optoelectronics and sensor devices
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 121
中文關鍵詞: 感測器氧化鋅奈米線
外文關鍵詞: Sensor, Nanowire, ZnO
相關次數: 點閱:51下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的主要目標為製作氧化鋅奈米線紫外光光檢測器、氣體感測器、p 型氧化鎳/n 型氧化鋅奈米線異質接面二極體及氧化鋅奈米線/p 型氮化鎵發光二極體。在光檢測器研究中,我們分別製作出四種不同結構之紫外光光檢測器,可分為氧化鋅奈米線光檢測器,加入SOG 絕緣層的氧化鋅奈米線光檢測器、側向成長奈米線光檢測器
    及無方向成長奈米線光檢測器。對於上面所提到的前兩個光檢測,我們先成長垂直排列整齊氧化鋅奈米線於基板上。為了方便製做光檢測器,於是直接在剛成長好的氧化鋅奈米線上熱蒸鍍金金屬。可以發現奈米線的最上端似乎被所沉積的金金屬給覆蓋,且每一根奈米線的上層會緊密地與相鄰的奈米線上層相接觸,奈米線的表面會形成火材棒形狀的金金屬薄膜並被當作電極使用,成功地製作了3D 結構的光檢測器。在2V之操作電壓上,此光檢測器的暗電流為2.198x10-4A。再者,我們也探討了此結構的氧氧氣體感測器的特性。在注入氧氣的條件下,可以發現氣體感測器的響應會隨著氧
    氣流量的增加(50mtorr~500torr)而增加(20.7%~136.6%)。此外,為了要使奈米線能堅固地連接兩端電極,並有效降低元件的暗電流,於是利用旋轉塗佈法塗佈一層SOG薄膜。在2V 之操作電壓上,擁有SOG 絕緣層光檢測器的暗電流密度只有3.8 x 10-9A/cm2。也由於有效降低暗電流,元件的時間常數大約只有0.44mSec,且紫外光對可
    見光的拒斥比值和量子效率分別高達1000 與12.6%。除此之外,此元件的雜訊等效功率和檢測度分別可達到5.73x10-11W 和6.17x109cmHz0.5W-1。在使用側向成長技術來製作光檢測器方面,側向成長之氧化鋅奈米線的平均長度和直徑分別為5μm 和30nm,且會橫跨兩鄰近指叉,提供電子傳輸路徑。在2V 外加偏壓下,光檢測器的光暗電流分別為5.0x10-8 和4.1x10-9A。且相對應的時間常數大約為452mSec。至於在無方向成長技術製作光檢測器方面,我們是將氧化鋅奈米線製作在圖案化的ZnO:Ga/SiO2/Si 基板上。我們發現成長在SiO2 上的奈米線並無固定長出的方向,而這些交錯的奈米線亦提供了電子傳輸路徑。當波長375nm 的光射入時,其響應度在外加1V 偏壓下為0.055A/W。且元件的雜訊等效功率和檢測度分別可達
    到2.32x10-9W 和7.43x109cmHz0.5W-1。此外,此交錯傾斜氧化鋅奈米線溼度感測器的特性亦被探討。在溼度增加的條件下,此感測器的電阻值會線性遞減。
    最後,我們濺鍍氧化鎳薄膜於剛成長好的垂直氧化鋅奈米線上,並發現此薄膜會在奈米線上聚集形成蘑菇狀。此p 型氧化鎳/n 型氧化鋅異質結構的開啟電壓~1V,且有很好的整流特性。而且在1V 的偏壓下電流電壓特性主要是由空間電荷限制電流所主宰。此外我們亦用熱化學氣相沉積法將氧化鋅奈米線成長於p 型氮化鎵基板上。此
    發光二極體元件發光特性主要是由p 型氮化鎵鎂摻雜或表面缺陷所造成。

    The main goal of this dissertation is the achievement of ZnO nanowire-based UV
    photodetectors, sensors, p-NiO/ ZnO nanowires heterojunction P-N diode and ZnO
    nanowires/p-GaN light emitting diode. In the study of ZnO nanowire-based photodetectors,
    four types of UV photodetectors: photodetectors with Au contacts, photodetectors with
    insulating spin-on-glass (SOG) layer, interlaced ZnO nanowires-based photodetectors and
    lateral ZnO nanowires-based photodetectors were studied. For the first two
    above-mentioned photodetectors, the well-aligned vertical ZnO nanowires used in this
    study were gorwn on ZnO:Ga/glass templates. For the fabrication of photodetectors, Au
    metal was thermally evaporated onto as-grown ZnO nanowires. It was found that tips of
    the ZnO nanowires seem to be covered by the subsequently deposited Au. It was also
    found that head of each individual club contacted closely with those of the neighboring
    clubs to form continuous Au thin film at the sample surface. Utilizing the matchstick-like
    nanowires to form a continuous Au thin film as contact, the 3D nanostructure of
    photodetector can be achieved. With a 2V applied bias, it was found that dark current of
    this photodetector was 2.198 x 10-4 A. Furthermore, we also reported the characteristics of
    he
    oxygen gas sensors. Upon the injection of oxygen gas, it was found that the response of
    the sensors increased from 20.7% to 136.6% with the increased oxygen gas ratio. Besides,
    in order to achieve good electrical contact to both ends of the ZnO nanowires and
    effectively reduce the dark current of the PDs, we coated a thin SOG film onto the
    as-grown ZnO nanowires. With 2V applied bias, it was found that dark current density of
    the photodetector with SOG layer was only 3.8 x 10-9 A/cm2. It was also found that the
    time constant and UV-to-visible rejection ratio of the fabricated photodetectors was around
    0.44 mSec and 1000 with a maximum quantum efficiency of 12.6%, respectively.
    Furthermore, it was also found that noise equivalent power and normalized detectivity of
    the ZnO nanowire photodetector were 5.73x10-11W and 6.17x109cmHz0.5W-1, respectively.
    By using the crabwise growth technique, the average length and diameter of lateral
    ZnO nanowires were around 5μm and 30 nm, respectively. The lateral ZnO nanowires can
    be bridged across two neighboring fingers to provide electrical paths. With 2V applied bias,
    it was found that dark current and photo current of the fabricated detector were 4.1x10-9
    and 5.0x10-8A, respectively. It was also found that the corresponding time constant of our
    lateral ZnO nanowire photodetector was around 452 mSec. On the part of the interlaced
    ZnO nanowire UV photodetectors, the high-density signle crystalline ZnO nanowires were
    grown on patterned ZnO:Ga/SiO2/Si templates. The ZnO nanowires grown on a sputtered
    ZnO:Ga layer were vertically aligned while those grown directly on a SiO2 layer were
    randomly oriented. Interlaced ZnO nanowires will also provide electrical paths on a SiO2
    layer. With an incident wavelength of 375 nm, it was found that measured responsivity was
    0.055 A/W for the interlaced ZnO nanowires photodetector with a 1V applied bias. The
    transient time constants measured during the turn-on and turn-off states were τon = 12.72
    ms and τoff = 447.66 ms, respectively. Furthermore, the low frequency noise spectra
    obtained from the UV photodetector were purely due to the 1/f noise. Besides, the noise
    Vequivalent
    power (NEP) and normalized detectivity (D*) of the ZnO nanowire
    photodetector were 2.32x10-9 W and 7.43x109 cmHz0.5W-1, respectively. In addition, we
    also reported the characteristics of ZnO nanowire-base humidity sensor. It was found that
    measured resistance of the sensor decreased linearly with the increase of RH.
    Finally, we reported the depositon of NiO onto ZnO nanowires prepared on
    ZnO:Ga/glass templates. With the sputtered NiO, the nanowires became mushroom-like.
    The p-NiO/n-ZnO heterostructure exhibits rectifying behavior with a sharp turn on at ~1V.
    Furthermore, the current vs. voltage characteristic is dominated by space-charge-limited
    current (SCLC) at high (1.1V) forward bias. Besides, the p-GaN/ ZnO nanowire
    heterostructure was also fabricated. The photoluminescence spectrum of p-GaN film
    exhibited broad bands at 432nm and 583nm and is attributed to shallow donors to deep Mg
    acceptor level or interface defects or transitions from conduction band. It was also found
    that EL emission of the LED is dominated by defect-related emission in the p-GaN layer.

    Abstract (in Chinese)..........................................................................................I Abstract (in English) ....................................................................................... III Acknowledgement........................................................................................... Ⅵ Contents......................................................................................................... VII Figure Captions ................................................................................................X CHAPTER 1 Introduction................................................................................. 1 1-1. Background and Motivation ................................................................................. 1 1-2. Organization of dissertation.................................................................................. 3 CHAPTER 2 Experimental equipment and theory of the research .................. 9 2-1. Various methods for growth of ZnO nanowires.................................................. 10 2-1-1. Chemical Vapor Deposition method ...................................................... 10 2-1-2. Template-assisted growth method .......................................................... 10 2-1-3. Solution-base synthesis method ............................................................. 11 2-1-4. Catalyst-driven molecular-beam-epitaxy method .................................. 12 2-1-5. Metalorganic Chemical Vapor Deposition method ................................ 12 2-1-6. Vapor-Liquid-Solid (VLS) method ........................................................ 12 2-1-7. Oxide-assisted growth............................................................................ 13 2-1-8. Vapor-Solid (VS) mechanism................................................................. 14 2-1-9. Self-catalyzed VLS process ................................................................... 15 2-2. Theory of photodetectors .................................................................................... 16 2-2-1. Therory of MSM photodetectors............................................................ 17 2-2-2. Current-voltage ...................................................................................... 18 2-2-3. Spectral response.................................................................................... 18 2-2-4. Noise equivalent power.......................................................................... 20 2-2-5. Detectivity .............................................................................................. 22 2-3. Theory concerning gas sensor based on ZnO nanowires.................................... 23 2-4. Experimental details and analytic ....................................................................... 25 2-4-1. Field-Emission Scanning Electron Sicroscope ...................................... 26 2-4-2. High resultion X-ray diffractometer....................................................... 27 2-4-3. Field Emission transmission electron microscopy ................................. 27 2-4-4. Photoluminescence Spectroscopy .......................................................... 27 CHAPTER 3 Well-aligned ZnO nanowire UV photodetectors and oxygen gas sensor............................................................................................................... 40 3-1. Vertical single crystal ZnO nanowires grown on ZnO:Ga/glass templates ........ 40 3-2. The novel application of well-aligned ZnO nanowire ........................................ 42 3-2-1. ZnO nanowire-based UV photodetector ................................................ 42 3-2-2. ZnO nanowire-based oxygen gas sensor................................................ 45 3-3. SOG technique applied to ZnO nanowire-based UV photodetector................... 47 3-4. Summary ............................................................................................................. 51 CHAPTER 4 A lateral ZnO nanowire UV photodetector prepared on ZnO:Ga/glass template.................................................................................... 67 4-1. Laterally ZnO nanowires grown on ZnO:Ga/glass templates............................. 67 4-2. A lateral ZnO nanowire UV photodetector ......................................................... 69 4-3. Summary ............................................................................................................. 71 CHAPTER 5 Interlaced and slantwise ZnO nanowire-based UV photodetectors and humidity sensor................................................................ 78 5-1. Interlaced and slantwise ZnO nanowires prepared on patterned ZnO:Ga/SiO2/Si templates .................................................................................................................... 78 5-2. Ultraviolet photodetector with interlaced ZnO nanowires.................................. 80 5-3. A ZnO nanowire-based humidity sensor............................................................. 84 5-4. Summary ............................................................................................................. 86 CHAPTER 6 P-N Diode based on ZnO nanowires ........................................ 96 6-1. Fabrication of P-N Diode based on ZnO nanowire/p-NiO heterojunction ......... 96 6-2. Characteristics of ZnO nanowire/p-NiO heterojunction..................................... 97 6-3. Electrical properties of P-N Diode based on ZnO nanowire/p-NiO heterojunction ................................................................................................................................... 99 6-4. Fabrication of P-GaN/N-ZnO nanowire heterojunction light-emitting diodes... 99 6-5.Optical and physical properties of P-GaN/N-ZnO nanowire heterojunction light-emitting diodes ................................................................................................ 100 6-6. Electrical properties of P-GaN/N-ZnO nanowire heterojunction light-emitting diodes .......................................................................................................... ……….101 6-7. Summary ........................................................................................................... 102 CHAPTER 7 Conclusion .............................................................................. 115

    CH1
    [1] A. W. Goddard, D. W. Brenner, S. E. Lyshevski, G.. J. lafrate, “Handbook of
    Nanoscience engineering and technology”, CRC Press, Boca Raton, 1, 2003
    [2] Y. Huang, X. Duan, Q. Wei, C. M. Lieber, “Directed Assembly of One-Dimensional
    Nanostructures into Functional Networks”, Science 291, 630 (2001)
    [3] W. Lu, C. M. Lieber, “Nanoelectronics from the bottom up”, Nat. Mater. 6, 841 (2007)
    [4] M. H. Huang, S. Mao, H. Feich, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. D.
    Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers”, Science 292, 1897
    (2001)
    [5] F. Qian, Y. Li, S. Gradecak, D. Wang, C. J. Barrelet, C. M. Lieber, “Gallium
    Nitride-Based Nanowire Radial Heterostructures for Nanophotonics”, Nano Lett. 4,
    1975 (2004)
    [6] P. V. Radovanovic, C. J. Barrelet, S. Gradecak, F. Qian, C. M. Lieber, “General
    Synthesis of Manganese-Doped II-VI and III-V Semiconductor Nanowires”, Nano Lett.
    5, 1407 (2005)
    [7] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber, “High Performance Silicon
    Nanowire Field Effect Transistors”, Nano Lett. 3, 149 (2003)
    [8] L. C. Qin, X. Zhao, K. Hirahara, Y. Miyamoto, Y. Ando, S. Iijima, “The smallest
    carbon nanotube”, Nature 208, 50 (2000)
    [9] N. Wang, Z. K. Tang, G. D. Li, J. S. Chen, “Materials science: Single-walled 4Å
    carbon nanotube arrays”, Nature, 408, 50 (2000)
    [10] Z. W. Pan, Z. R. Dai, Z. L. Wang, “Nanobelts of Semiconducting Oxides”, Science
    297, 1947 (2001)
    [11] Y. K. Liu, J. A. Zapien, Y. Y. Shan, C. Y. Geng, C. S. Lee, S. T. Lee,
    “Wavelength-Controlled Lasing in ZnxCd1-xS Single-Crystal Nanoribbons”, Adv.
    Mater. 17, 1372 (2005)
    [12] M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, “Nanowire dye-sensitized
    solar cells”, Nat. Mater. 4, 455 (2005)
    [13] S.A. McDonald, G. Konstantatos, S. Zhang, P.W. Cyr, E.J.D. Klem, L. Levina, E.H.
    Sargent, “Solution-processed PbS quantum dot infrared photodetectors and
    photovoltaics”, Nat. Mater. 4, 138 (2005)
    [14] I. L. Medintz, H. Tetsuo Uyeda, E.R. Goldman, H. Mattoussi, “Quantum dot
    bioconjugates for imaging, labelling and sensing”, Nat. Mater. 4 , 435 (2005)
    [15] W. K. Hong, J. I. Sohn, D. K. Hwang, S. S. Kwon, G. Jo, S. Song, S.M. Kim, H. J. Ko,
    S. J. Park, M. E. Welland, T. Lee, “Tunable electronic transport characteristics of
    surface-architecture-controlled ZnO nanowire field effect transistors”, Nano Lett. 8,
    950 (2008)
    [16] J.B. Baxter, E.S. Aydil, “Nanowire-based dye-sensitized solar cells”, Appl. Phys. Lett.
    86, 053114 (2005)
    [17] J. Chen, Y. Zhang, B. J. Skromme, K. Akimoto and S. J. Pachuta, “Properties of the
    shallow O-related acceptor level in ZnSe”, J. Appl. Phys. 78, 5109 (1995)
    [18] H. Kato, M. Sano, K. Miyanoto, T. Yao, “Homoepitaxial Growth of High-Quality
    Zn-Polar ZnO Films by Plasma-Assisted Molecular Beam Epitaxy”, Jap. J. Appl.
    Phys. 42, L1002 (2003)
    [19] K. Keem, J. Kang, C. Yoon, D. Yeom, D. Y. Jeong, B. M. Moon, S. Kim, “A
    fabrication technique for top-gate ZnO nanowire field-effect transistors by a
    photolithography process”, Microelectronic Engineering 84, 1622 (2007)
    [20] P. J. Pauzauskie, P. Yang, “Nanowire photonics”, Mater. Today 9, 36 (2006)
    [21] B. S. Zou, R. Liu, F. Wang, A. Pan, L. Cao, Z.L. Wang, “Lasing Mechanism of ZnO
    Nanowires/Nanobelts at Room Temperature”, J. Phys. Chem. B 110, 12865 (2006)
    [22] T. J. Hsueh, C. L. Hsu, S. J. Chang, I. C. Chen, “Laterally grown ZnO nanowire
    ethanol gas sensors”, Sensor. Actuator B 126, 473 (2007)
    [23] T. J. Hsueh, S. J. Chang, C. L. Hsu, Y.R. Lin, I. C. Chen, “ZnO Nanotube Ethanol
    Gas Sensors”, J. Electrochem. Soci. 155, K152 (2008)
    [24] C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, C. J. Huang, Y. K. Tseng and I. C.
    Chen, “Vertical Single-Crystal ZnO Nanowires Grown on ZnO : Ga/Glass
    Templates”, IEEE Tran. Nanotechnol. 4, 649 (2005)
    [25] C. L. Hsu, S. J. Chang, Y. R. Lin, J. M. Wu, T. S. Lin, S. Y. Tsai and I. C. Chen,
    “Indium-diffused ZnO nanowires synthesized on ITO-buffered Si substrate”,
    Nanotechnol. 17, 516 (2006)
    [26] C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, C. J. Huang, Y. K. Tseng, and I. C.
    Chen, “Well-Aligned, Vertically Al-Doped ZnO Nanowires Synthesized on
    ZnO:Ga/Glass Templates”, J. Electrochem. Soc. 152, G378 (2005)
    [27] J. J. Wu, S. C. Liu, “Catalyst-free growth and characterization of ZnO nanorods”, J.
    Phys. Chem. B 106, 9546 (2002)
    [28] Y. Li, G. W. Meng, L. D. Zhang, F. Phillipp, “Ordered semiconductor ZnO nanowire
    arrays and their photoluminescence properties”, Appl. Phys. Lett. 76, 2011 (2000)
    [29] L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous
    solutions”, Adv. Mater. (Weinheim, Ger.) 15, 464 (2003)
    [30] Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. P. Norton, F. Ren, P. H.
    Fleming, “Site-specific growth of Zno nanorods using catalysis-driven
    molecular-beam epitaxy”, Appl. Phys. Lett. 81, 3046 (2002)
    [31] W. I. Park, Y. H. Jun, S. W. Jung, G. C. Yi, “Excitonic emissions observed in ZnO
    single crystal nanorods”, Appl. Phys. Lett. 82, 964 (2003)
    [32] M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Weber, P. D. Yang, “Catalytic growth
    of zinc oxide nanowires by vapor transport”, Adv. Mater., (Weinheim, Ger.) 13, 113
    (2001)
    [33] J. Grabowska, K. K. Nanda, E. McGlynn, J. P. Mosnier, M. O. Henry, “Studying the
    growth conditions, the alignment and structure of ZnO nanorods”, Surface & Coatings
    Technology 200, 1093 (2005)
    [34] C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, T. H. Lu, Y. K. Tseng and I. C. Chen,
    “Selective growth of vertical ZnO nanowires on ZnO:Ga/Si3N4/SiO2/Si templates”, J.
    Vac. Sci. Technol. B 23, 2292 (2005)
    [35] T. J. Hsueh, C. L. Hsu, S. J. Chang, Y. R. Lin, T. S. Lin and I. C. Chene, “Growth and
    Characterization of Sparsely Dispersed ZnO Nanowires”, J. Electrochem. Soc. 154(3),
    H153 (2007)
    CH2
    [1] D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang, Y. H. Zou, W. Qian,
    G. C. Xiong, H. T. Zhou, and S. Q. Feng, "Nanoscale silicon wires synthesized using
    simple physical evaporation", Appl. Phys. Lett. 72, 3458 (1998)
    [2] W. Q. Han, S. S. Fan, Q. Q. Li and Y. D. Hu, "Synthesis of Gallium Nitride Nanorods
    Through a Carbon Nanotube-Confined Reaction", Science 277, 1287 (1997)
    [3] J. J. Wu , S. C. Liu,"Low-Temperature Growth of Well-Aligned ZnO Nanorods by
    Chemical Vapor Deposition", Adv. Mater. 14, 215 (2002)
    [4] W. I. Park, Y. H. Jun, S. W. Jung, and Gyu-Chul Yi, "NExcitonic emissions observed
    in ZnO single crystal nanorods", Appl. Phys. Lett. 82, 964 (2003)
    [5] N. Pan, X. Wang, K. Zhang, H. Hu, B. Xu, F. Li and J. G. Hou, "An approach to
    control the tip shapes and properties of ZnO nanorods", Nanotechnol. 16, 1069 (2005)
    [6] Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, "Ultraviolet-emitting ZnO
    nanowires synthesized by a physical vapor deposition approach", Appl. Phys. Lett.
    78, 407 (2001)
    [7] Z. W. Pan, Z. R. Dai and Z. L. Wang, "Nanobelts of Semiconducting Oxides", Science
    291, 1947 (2001)
    [8] Y. Du, Song Han, Wu Jin, C. Zhou, and A. F. J. Levi, "Polarization-dependent
    reflectivity from dielectric nanowires", Appl. Phys. Lett. 83, 996 (2003)
    [9] K. Keem, H. Kim, G. T. Kim, J. S. Lee, B. Min, K. Cho, M. Y. Sung, and S. Kim,
    "Photocurrent in ZnO nanowires grown from Au electrodes", Appl. Phys. Lett. 84,
    4376 (2004)
    [10] Y. W. Heo, B. S. Kang, L. C. Tien, D. P. Norton, F. Ren, J. R. LaRoche and S. J.
    Pearton, "UV photoresponse of single ZnO nanowires", Appl. Phys. A 80, 497 (2005)
    [11] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang, "Catalytic Growth
    of Zinc Oxide Nanowires by Vapor Transport", Adv. Mater. 13, 113 (2001)
    [12] H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton,
    Jenshan Lin,"Hydrogen-selective sensing at room temperature with ZnO nanorods",
    Appl. Phys. Lett. 86, 243503 (2005)
    [13] M. Law, L. E. Green, J. C. Johnson, R. Saykally and P. Yang, "Nanowire
    dye-sensitized solar cells", Nature 4, 455, (2005)
    [14] C. H. Chia, T. Makino, K. Tamura, Y. Segawa, M. Kawasaki, A. Ohtomo, H.
    Koinuma,"Confinement-enhanced biexciton binding energy in ZnO/ZnMgO
    multiple quantum wells", Appl. Phys. Lett. 82, 1848 (2005)
    [15] S. C. and J. J. Wu, “Low-temperature and catalyst-free synthesis of well-aligned
    ZnO nanorods on Si (100)”, J. Mater. Chem. 12, 3125 (2002)
    [16] Y. Li, G. W. Meng, L. D. Zhang,F. Phillipp,"Ordered semiconductor ZnO nanowire
    arrays and their photoluminescence properties", Appl. Phys. Lett. 76, 2011 (2000)
    [17] L. Vayssieres, "Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous
    Solutions", Adv. Mater. 15, 464 (2003)
    [18] Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. P. Norton, F. Ren, P. H.
    Fleming,"Site-specific growth of Zno nanorods using catalysis-driven
    molecular-beam epitaxy", Appl. Phys. Lett. 81, 3046 (2002)
    [19] W. I. Park, S. J. An, J. L. Yang and G. C. Yi, "Photoluminescent Properties of
    ZnO/Zn0.8Mg0.2O Nanorod Single-Quantum-Well", J. Phys. Chem. B 108, 15457
    (2004)
    [20] W. I. Park, Gyu-Chul Yi,J.-W. Kim and S.-M. Park,"Schottky nanocontacts on ZnO
    nanorod arrays", Appl. Phys. Lett. 82, 4358 (2003)
    [21] P. X. Gao and Z. L. Wang, "Substrate Atomic-Termination-Induced Anisotropic
    Growth of ZnO Nanowires/Nanorods by the VLS Process",J. Phys. Chem. B 108,
    7534 (2004)
    [22] C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, C. J. Huang, Y. K. Tseng and I. C.
    Chen, "Vertical single-crystal ZnO nanowires grown on ZnO:Ga/glass templates,
    IEEE Tran. Nanotechnol. 4, 649 (2005)
    [23] J. J. Wu, S. C. Liu, “ Catalyst-Free Growth and Characterization of ZnO Nanorods“,
    J Phys Chem. B 106, 9546 (2002)
    [24] T. N. Xu, H. Z. Wu, Y. F. Lao, D. J. Qiu, N. B. Chen, N. Dai,
    “Anodic-aluminium-oxide template-assisted growth of ZnO nanodots on Si (100) at
    low temperature”, Chinese phys. Letters 21, 1327 (2004)
    [25] W. I. Park, Y. H. Jun, S. W. Jung, G. C. Yi, “Metalorganic vapor-phase epitaxial
    growth of vertically well-aligned ZnO nanorods”, Appl. Phys. Lett. 80, 4232 (2002)
    [26] S. Muthukumar, H. Sheng, J. Zhong, Z. Zhang, N. W. Emanaetoglu, and Y. Lu,
    “Selective MOCVD growth of ZnO nanotips”, IEEE Trans. Nanotechnol. 2, 50
    (2003)
    [27] Y. Wu, P. Yang, “Direct Observation of Vapor-Liquid-Solid Nanowire Growth”, J.
    Am. Chem. Soc. 123, 3165 (2001)
    [28] W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, S. T. Lee,“Microstructures of gallium
    nitride nanowires synthesized by oxide-assisted method”, Chem. Phys. Lett. 345, 377
    (2001)
    [29] W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, S. T. Lee, “Oxide-assisted growth and
    optical characterization of gallium-arsenide nanowires”, Appl. Phys. Lett. 78, 3304
    (2001)
    [30] S. T. Lee, N. Wang, and C. S. Lee, “Semiconductor nanowires: syntheisi, sturcture
    and properties”, Mate. Scie. and Engi. A286, 16 (2000)
    [31] C. N. R. Rao, F. L. Deepak, G. Gundiah, A. Govindaraj, “Inorganic nanowires”,
    Progress in Sol. Stat. Chem. 31, 5 (2003)
    [32] N. Wang, Y. H. Tang, Y. F. Zheng, C. S. Lee, I. Bello, S. T. Lee, “Si nanowires
    grown from silicon oxide”, Chem. Phys. Lett. 299, 237 (1999)
    [33] G. W. Sears, “A growth mechanism for mercury whiskers”, Acta Metallurgica 3,
    361 (1955)
    [34] G. W. Sears, “A mechanism of whisker growth”, Acta Metallurgica 3, 367 (1955)
    [35] G. W. Sears, “Mercury whiskers”, Acta Metallurgica 1, 457 (1953)
    [36] J. F. Conley Jr, L. Stecker and Y. Ono, “Directed assembly of ZnO nanowires on a
    Si substrate without a metal catalyst using a patterned ZnO seed layer”,
    Nanotechnology 16, 292 (2005)
    [37] Y. Zhang, H. B. Jia, X. H. Luo, X. H. Chen, D. P. Yu, R. M. Wang, “Synthesis,
    Microstructure, and Growth Mechanism of Dendrite ZnO Nanowires”, J. Phys.
    Chem. B 107, 8289 (2003)
    [38] W. P. Zheng, Z. R. Dai, Z. L. Wang, “Nanobelts of Semiconducting Oxides”,
    Science 291, 1947 (2001)
    [39] C. Geng, Y. Jiang, Y. Yao, X. Meng, J. A. Zapien, C. S. Lee, Y. Lifshitz, S. T. Lee,
    “Well-aligned ZnO nanowire arrays fabricated on silicon substrates”, Adv. Funct.
    Mater. 14, 589 (2004)
    [40] H. J. Egelhaaf and D. Oelkrug, “Luminescence and nonradiative deactivation of
    excited states involving oxygen defect centers in polycrystalline ZnO”, J. Crystal
    Growth 161, 190 (1996)
    [41] P. Mitra, A. P. Chatterjee and H. S. Maiti, “ZnO thin film sensor”, Mater. Lett. 35,
    33 (1998)
    [42] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li and C. L. Lin,
    “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors”, Appl.
    Phys. Lett. 84, 3654 (2004)
    [43] M. Batzill and U. Diebold, “Surface studies of gas sensing metal oxides”, phys.
    Chem. Chem. Phys. 9, 2307 (2007)
    [44] J. Cerd`a Belmonte, J. Manzano, J. Arbiol, A. Cirera, J. Puigcorb´e, A. Vil`a, N.
    Sabat´e, I. Gr`acia, C. Can´e, J. R. Morante, “Micromachined twin gas sensor for CO
    and O2 quantification based on catalytically modified nano-SnO2”, Sens. Actuators B
    114, 881 (2006)
    [45] P. P. Sahay, “Zinc oxide thin film gas sensor for detection of acetone”, J. Mater. Sci.
    40, 4383 (2005)
    [46] Y. Wang, J. Chen and X. Wu, “Preparption and gas-sensing properites of
    perovskite-type SrFeO3 oxide”, Mater. Lett. 49, 361 (2001)
    [47] A. Kolmakov, Y. Zhang, G. Chen, M. Moskovits, “Detection of CO and O2 using tin
    oxide nanowire sensor”, Adv. Mater. 12, 997 (2003)
    CH3
    [1] C. L. Hsu, Y. R. Lin, S. J. Chang, T. S. Lin, S. Y. Tsai and I. C. Chen, “Vertical
    ZnO/ZnGa2O4 core–shell nanorods grown on ZnO/glass templates by reactive
    evaporation”, Chem. Phys. Lett. 411, 221 (2005)
    [2] Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Lin, K. S. Liu and I. C. Chen,
    “Characterization and field-emission properties of needle-like zinc oxide nanowires
    grown vertically on conductive zinc oxide films”, Adv. Funct. Mater. 13, 811 (2003)
    [3] Y. K. Tseng, H. C. Hsu, W. F. Hsieh, K. S. Liu and I. C. Chen, “Two-step oxygen
    injection process for growing ZnO nanorods”, J. Mater. Res. 18, 2837 (2003)
    [4] H. Kind, H. Yang, B. Messer, M. Law and P. Yang, “Nanowire Ultraviolet
    Photodetectors and Optical Switches”, Adv. Mater. 14, 158 (2002)
    [5] T. C. Damen, S. P. S. Porto and B. Tell, “Raman Effect in Zinc Oxide”, Phys. Rev.,
    vol. 142, 570 (1966)
    [6] T. S. Ko, S. Yang, H. C. Hsu, C. P. Chu, H. F. Lin, S. C. Liao, T. C. Lu, H. C. Kuo, W.
    F. Hsieh and S. C. Wang, Mater. Sci. Eng. B 134, 54 (2006)
    [7] A. Umar, B. Karunagaran, E. K. Suh and Y. B. Hahn, “Structural and optical
    properties of single-crystalline ZnO ananorods grown on silicon by thermal
    evaporation”, Nanotechnol. 17, 4072 (2006).
    [8] P. Mitra, A. P. Chatterjee and H. S. Maiti, “ZnO thin film sensor”, Mater. Lett. 35, 33
    (1998)
    [9] Y. Takahashi, M. Kanamori, A. Kondoh, H. Mimoura, Y. Ohya, “Photoconductivity of
    Ultrathin Zinc Oxide Films”, Jpn. J. Appl. Phys. 33, 6611 (1994).
    [10] L. Liu, C. R. Goria, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, M. Wraback,
    “Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD”, J. Electron.
    Mater. 29, 69 (2000).
    [11] Q. H. Li, Q. Wan, Y. X. Liang, and T. H. Wang, “Electronic transport through
    individual ZnO nanowires“, Appl Phys. Lett. 84, 4556 (2004).
    [12] N. Yamazoe and N. Miura, “Development of gas sensors for environmental
    protection”, IEEE Tran. Compou. Packag. Manuf. Technol. Part A 18, 252 (1995)
    [13] W. Weppner, “Advanced principles of sensors based on solid state ionics”, Mater. Sci.
    Eng. B 15, 48 (1992)
    [14] L. M. Cukrov, P. G. McCormick, K. Galatsis and W. Wlodarski, “Gas sensing
    properties of nanosized tin oxide synthesized by mechanochemical processing”, Sens.
    Acturators B 77, 491 (2001)
    [15] T. Schwebel, M. Fleischer and H. Meixner, “A selective, temperature compensated
    O2 sensor based on Ga2O3 thin films”, Sens. Acturators B 65, 176 (2000)
    [16] L. Zheng, M. Xu and T. Xu, “TiO2−x thin films as oxygen sensor”, Sens. Acturators B
    66, 28 (2000)
    [17] N. Izu, W. Shin, N. Murayama and S. Kanzaki, “Resistive oxygen gas sensors based
    on CeO2 fine powder prepared using mist pyrolysis”, Sens. Acturators B 87, 95 (2002)
    [18] F. Chaabouni, M. Abaab and B. Rezig, “Metrological characteristics of ZNO oxygen
    sensor at room temperature”, Sens. Acturators B 100, 200 (2004)
    [19] J. Y. Park, D. E. Song and S. S. Kim, “An approach to fabricating chemical sensors
    based on ZnO nanorod arrays”, Nanotechnol. 19, 105503 (2008)
    [20] W. I. Park, G. C. Yi, W. I. Kim and S. M. park,” Schottky nanocontacts on ZnO
    nanorod arrays”, Appl. Phys. Lett. 82, 4358 (2003)
    [21] C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, C. J. Huang, Y. K. Tseng, I. C. Chen,”
    Vertical single-crystal ZnO nanowires grown on ZnO:Ga/glass templates”, IEEE Tran.
    Nanotechnol. 4, 649 (2005)
    [22] S. C. Lyu, Y. Zhang, H. Ruh, H. J. Lee, H. W. Shim, E. K. Suh and C. J. Lee, “Low
    temperature growth and photoluminescence of well-aligned zinc oxide nanowires”,
    Chem. Phys. Lett. 363, 134 (2002)
    [23] B. J. Jin, S. H. Bae, S. Y. Lee and S. Im, “Effects of native defects on optical and
    electrical properties of ZnO prepared by pulsed laser deposition”, Mater. Sci. Eng. B
    71, 301 ( 2000)
    [24] H. J. Egelhaaf and D. Oelkrug, “Luminescence and nonradiative deactivation of
    excited states involving oxygen defect centers in polycrystalline ZnO”, J. Crystal
    Growth 161, 190 (1996)
    [25] R. Konenkamp, R. Word and C. Schlegel, Appl. Phys. Lett. “Vertical nanowire
    light-emitting diode”, 85, 6004 (2004)
    [26] J. T. Xu, D. You, Y. W. Tang, Y. Kang, X. Li, X. Y. Li and H. M. Gong,
    “Electric-field effects on persistent photoconductivity in undoped n-type epitaxial
    GaN”, Appl. Phys. Lett. 88, 072106 (2006)
    [27] M. Salis, A. Anedda, F. Quarati, A. J. Blue and W. J. Cunningham, “Photocurrent in
    epitaxial GaN”, J. Appl. Phys. 97, 033709 (2005)
    [28] B. Poti, A. Passaseo, M. Lomascolo, R. Cingolani and M. De Vittorio, “Persistent
    photocurrent spectroscopy of GaN metal–semiconductor–metal photodetectors on
    long time scale”, Appl. Phys. Lett. 85, 6083 (2004)
    [29] Q. H. Li, T. Gao, Y. G. Wang and T. H. Wang, “Adsorption and desorption of oxygen
    probed from ZnO nanowire films by photocurrent measurements “, Appl. Phys. Lett.
    86 ,123117 (2005)
    [30] Y. W. Heo, B. S. Kang, L. C. Tien, D. P. Norton, F. Ren, J. R. LaRoche and S. J.
    Pearton, “UV photoresponse of single ZnO nanowires”, Appl. Phys. A 80, 497 (2005)
    [31] O. Harnack, C. Pacholski, H. Weller, A. Yasuda and J. M. Wessels, “Rectifying
    behavior of electrically aligned ZnO nanorods”, Nano Lett. 3, 1097 (2003)
    [32] S. J. Baik, J. H. Jang, C. H. Lee, W. Y. Cho and K. S. Lim, “Highly textured and
    conductive undoped ZnO film using hydrogen post-treatment “, Appl. Phys. Lett. 70,
    3516 (1997)
    [33] Q. H. Li, Q. Wan, Y. X. Liang and T. H. Wang, “Electronic transport through
    individual ZnO nanowires”, Appl. Phys. Lett. 84, 4556 (2004)
    [34] T. K. Lin, S. J. Chang, Y. K. Su, B. R. Huang, M. Fujita and Y. Horikoshi, “ZnO
    MSM photodetectors with Ru contact electrodes”, J. Crystal Growth 281, 513 (2005)
    [35] A. Bid, A. Bora and A. K. Raychaudhuri, “1/f noise in nanowires”, Nanotechnol. 17,
    152 (2006)
    [36] P. Dutta and P. M. Horn, “Low-frequency fluctuations in solids: 1/f noise”, Rev. Mod.
    Phys. 53, 497 (1981)
    [37] S. J. Young, L. W. Ji, R. W. Chuang, S. J. Chang and X. L. Du, “Characterization of
    ZnO metal–semiconductor–metal ultraviolet photodiodes with palladium contact
    electrodes”, Semicond. Sci. Technol. 21, 1507 (2006)
    [38] S. J. Young, L. W. Ji, S. J. Chang and Y. K. Su, “ZnO metal-semiconductor-metal
    ultraviolet sensors with various contact electrodes”, J. Crystal Growth 293, 43 (2006)
    CH4
    [1] C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, T. H. Lu, Y. K. Tseng and I. C. Chen,
    “Selective growth of vertical ZnO nanowires on ZnO:Ga/Si3N4/SiO2/Si templates”, J.
    Vaccum Sci. Technol. B 23 2292 (2005).
    [2] C. L. Hsu, S. J. Chang, Y. R. Lin, P. C. Li, T. S. Lin, S. Y. Tsai, T. H. Lu, I. C. Chen,
    Chem. Phys. Lett. 416, 75 (2005).
    [3] C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, C. J. Huang, Y. K. Tseng and I. C.
    Chen, “Vertical Single-Crystal ZnO Nanowires Grown on ZnO:Ga/Glass Templates”,
    IEEE Tran. Nanotechnol. 4, 649 (2005).
    [4] Y. K. Tseng, H. C. Hsu, W. F. Hsieh, K. S. Liu, I. C. Chen, “Two-step oxygen
    injection process for growing ZnO nanorods”, J. Mater. Res. 18, 2837 (2003)
    [5] Y. Takahashi, M. Kanamori, A. Kondoh, H. Mimoura and Y. Ohya,
    “Photoconductivity of Ultrathin Zinc Oxide Films”, Jpn. J. Appl. Phys. 33, 6611
    (1994).
    [6] L. Liu, C. R. Goria, S. Liang, N. Emanetoglu, Y. Lu, H. Shen and M. Wraback,
    “Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD”, J. Electron.
    Mater. 29, 69 (2000).
    [7] Y. Lin, D. Wang, Q. Zhao, Z. Li, Y. Ma, M. Yang, “Influence of adsorbed oxygen on
    the surface photovoltage and photoluminescence of ZnO nanorods “, Nanotechnol. 17,
    2110 (2006).
    [8] J. D. Prades, F. Hernandez-Ramirez, R. Jimenez-Diaz, M. Manzanares, T. Andreu, A.
    Cirera, A. Romano-Rodriguez, J. R. Morante, “The effects of electron–hole separation
    on the photoconductivity of individual metal oxide nanowires “, Nanotechnol. 19,
    465501, (2008)
    [9] J. Nayak, J. Kasuya, A. Watanabe, S. Nozaki, “Persistent photoconductivity in ZnO
    nanorods deposited on electro-deposited seed layers of ZnO “, J. Phys.: Condens. Matter
    20, 195222 (2008)
    [10] J. Huang, L. Wang, R. Xu, W. Shi, Y. Xia, “Effect of a buffer layer on the properties
    of UV photodetectors based on a ZnO/diamond film structure”, Semicond. Sci. Technol.
    23, 125018 (2008)
    [11] K. KEEM, J. KANG, D.Y. JEONG, B. MIN, K. CHO, H. KIM, S. KIM, Y. K. KIM,
    “Aging Effect on the Optoelectronic Properties of a Single ZnO Nanowire”, Jpn. J.
    Appl. Phys. 46, 4355 (2007)
    [12] S. S. Hullavarad, N. V. Hullavarad, P. C. Karulkar,A. Luykx, P. Valdivia, “Ultra
    violet sensors based on nanostructured ZnO spheres in network of nanowires: a novel
    approach “, Nanoscale Res. Lett. 2, 161 (2007)
    [13] S. Mridha, M. Nandi, A. Bhaumik, D. Basak, “A novel and simple approach to
    enhance ultraviolet photosensitivity: activated-carbonassisted growth of ZnO
    nanoparticles “, Nanotech. 19, 275705 (2008)
    CH5
    [1] W. K. Hong, J. I. Sohn, D. K. Hwang, S. S. Kwon, G. Jo, S. Song, S.M. Kim, H. J. Ko, S. J. Park, M. E. Welland, T. Lee, “Tunable electronic transport characteristics of surface-architecture-controlled ZnO nanowire field effect transistors”, Nano Lett. 8, 950 (2008)
    [2] K. Keem, J. Kang, C. Yoon, D. Yeom, D. Y. Jeong, B. M. Moon, S. Kim, “A fabrication technique for top-gate ZnO nanowire field-effect transistors by a photolithography process”, Microelectronic Engineering 84, 1622 (2007)
    [3] P. J. Pauzauskie, P. Yang, “Nanowire photonics”, Mater. Today 9, 36 (2006)
    [4] B. S. Zou, R. Liu, F. Wang, A. Pan, L. Cao, Z.L. Wang, “Lasing Mechanism of ZnO Nanowires/Nanobelts at Room Temperature”, J. Phys. Chem. B 110, 12865 (2006)
    [5] T. J. Hsueh, C. L. Hsu, S. J. Chang, I. C. Chen, “Laterally grown ZnO nanowire ethanol gas sensors”, Sensor. Actuator B 126, 473 (2007)
    [6] T. J. Hsueh, S. J. Chang, C. L. Hsu, Y.R. Lin, I. C. Chen, “ZnO Nanotube Ethanol Gas Sensors”, J. Electrochem. Soci. 155, K152 (2008)
    [7] C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, C. J. Huang, Y. K. Tseng and I. C. Chen, “Vertical Single-Crystal ZnO Nanowires Grown on ZnO : Ga/Glass Templates”, IEEE Tran. Nanotechnol. 4, 649 (2005)
    [8] C. L. Hsu, S. J. Chang, Y. R. Lin, J. M. Wu, T. S. Lin, S. Y. Tsai and I. C. Chen, “Indium-diffused ZnO nanowires synthesized on ITO-buffered Si substrate”, Nanotechnol. 17, 516 (2006)
    [9] C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, C. J. Huang, Y. K. Tseng, and I. C. Chen, “Well-Aligned, Vertically Al-Doped ZnO Nanowires Synthesized on ZnO:Ga/Glass Templates”, J. Electrochem. Soc. 152, G378 (2005)
    [10] M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, “Nanowire dye-sensitized solar cells”, Nat. Mater. 4, 455 (2005)
    [11] C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, T. H. Lu, Y. K. Tseng and I. C. Chen, “Selective growth of vertical ZnO nanowires on ZnO:Ga/Si3N4/SiO2/Si templates”, J. Vac. Sci. Technol. B 23, 2292 (2005)
    [12] T. J. Hsueh, S. J. Chang, Y. R. Lin, S. Y. Tsai, I. C. Chen and C. L. Hsu, “A Novel Method for the Formation of Ladder-like ZnO Nanowires”, Cryst. Growth Des. 6 1282 (2006)
    [13] Q. H. Li, T. Gao, Y. G. Wang, T. H. Wang, “Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements”, Appl. Phys. Lett. 86, 123117 (2005)
    [14] O. Harnack, C. Pacholski, H. Weller, A. Yasuda, J. M. Wessels, “Rectifying behavior of electrically aligned ZnO nanorods”, Nano Lett. 3, 1097 (2003)
    [15] Y. W. Heo, B. S. Kang, L. C. Tien, D. P. Norton, F. Ren, J. R. La Roche, S. J. Pearton, “UV photoresponse of single ZnO nanowires”, Appl. Phys. A: Mater. Sci. Process. 80, 497 (2005)
    [16] J. C. Carrano, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, J. C. Campbell, “Very low dark current metal–semiconductor–metal ultraviolet photodetectors fabricated on single-crystal GaN epitaxial layers”, Appl. Phys. Lett. 70, 1992 (1997)
    [17] L. T. Chen, C. Y. Lee and W. H. Cheng, “MEMS-based humidity sensor with integrated temperature compensation mechanism”, Sens. Actuators A 147, 525 (2008)
    [18] Z. P. Sun, L. Liu, L. Zhang and D. Z. Jia, “Rapid synthesis of ZnO nano-rods by one-step, room-temperature, solid-state reaction and their gas-sensing properties”, Nanotechnol. 17, 2266 (2006)
    [19] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors”, Appl. Phys. Lett. 84, 3654 (2004)
    [20] E. Comini, G. Faglia, G. Sberveglieri, Z. Pan and Z. L. Wang, “Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts”, Appl. Phys. Lett. 81, 1869 (2002)
    [21] R. J. Wu, Y. L. Sun, C. C. Lin, H. W. Chen and M. Chavali, “Composite of TiO2 nanowires and Nafion as humidity sensor material”, Sens. Actuators B 115, 198 (2006)
    [22] A. Vomiero, S. Bianchi, E. Comini, G. Faglia, M. Ferroni, N. Poli and G. Sberveglieri, “In2O3 nanowires for gas sensors: morphology and sensing characterization”, Thin Solid Films 515, 8356 (2007)
    [23] K. M. Sawicka, A. K. Prasad and P. I. Gouma, “Metal oxide nanowires for use in chemical sensing applications”, Sens. Lett. 3, 31 (2005)
    [24] S. J. Chang, T. J. Hsueh, I. C. Chen and B. R. Huang, "Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles", Nanotechnol. 19, 175502 (2008)
    [25] T. J. Hsueh, S. J. Chang, C. L. Hsu, Y. R. Lin and I. C. Chen, "Highly sensitive ZnO nanowire ethanol sensor with Pd adsorption", Appl. Phys. Lett. 91, 053111 (2007)
    [26] S. J. Chang, T. J. Hsueh, C. L. Hsu, Y. R. Lin, I. C. Chen and B. R. Huang, "A ZnO nanowire vacuum pressure sensor", Nanotechnol. 19, 095505 (2008)
    CH6
    [1.] M. C. Jeong, B. Y. Oh, M. H. Ham, S. W. Lee, and J. M. Myoung, “ZnO-Nanowire-Inserted GaN/ZnO Heterojunction Light-Emitting Diodes”, Small 3, 568 (2007)
    [2.] J. D. Ye, S. L. Gu, S. M. Zhu, W. Liu, S. M. Liu, R. Zhang, Y. Shi, and Y. D. Zheng, “Electroluminescent and transport mechanisms of n-ZnO/p-Si heterojunctions “, Appl. Phys. Lett. 88 182112 (2006)
    [3.] A. C. Mofora, A. Bakina, U. Chejarlaa, E. Schlenkera, A. El-Shaera, G. Wagnerb, N. Boukosc, A. Travlosc, and A. Waaga, “Fabrication of ZnO nanorod-based p–n heterojunction on SiC substrate “, Superlattices Microstruct. 42, 415 (2007)
    [4.] W. I. Park and G. C. Yi, “Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN”, Adv. Mater. 16 87 (2004)
    [5.] B. Ling, X.W. sun, J.L. Zhao, S.T. Tan, Z.L. Dong, Y. Yang, H.Y. Yu, K.C. Qi, “Electroluminescence from a n-ZnO nanorod/p-CuAlO2 heterojunction light-emitting diode “, Physica E 41 635 (2009)
    [6.] D. Adler, J. Feinleib, “Electrical and Optical Properties of Narrow-Band Materials “, Phys. Rev. B 2 3112 (1970)
    [7.] H. Sato, T. Minami, S. Takata, T. Yamada, “Transparent-conducting p-type NiO thin films prepared by magnetron sputtering “, Thin Solid Films 236 27 (1993)
    [8.] C. L. Hsu, S. J. Chang, Y. R. Lin, S. Y. Tsai, I. C. Chen, “Vertically well aligned P-doped ZnO nanowires synthesized on ZnO–Ga/glass templates“, Chem. Commun. 28 3571 (2005)
    [9.] T. J. Hsueh, S. J. Chang, Y. R. Lin, S. Y. Tsai, I. C. Chen, C. L. Hsu, “A Novel Method for the Formation of Ladder-like ZnO Nanowires”, Cryst. Growth Des. 6 1282 (2006)
    [10.] K. Kobayashi, M. Yamaguchi, Y. Tomita, Y. Maeda, “Fabrication and characterization of In-Ga-Zn-O/NiO structures “, Thin Solid Films 516 5903 (2008)
    [11.] R. Knenkamp, Robert C. Word, and C. Schlegel, “Vertical nanowire light-emitting diode”, Appl. Phys. Lett. 85, 6004 (2004)
    [12.] M. C. Jeong, B. Y. Oh, M. H. Ham and J. M. Myoung, “Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes “, Appl. Phys. Lett. 88, 202105 (2006)
    [13.] S. W. Han, H. J. Yoo, S. J. An, J. Yoo and G. C. Yi, “Orientation-dependent x-ray absorption fine structure of ZnO nanorods “, Appl. Phys. Lett. 86, 21917 (2005)
    [14.] W. I. Park, D. H. Kim, S. W. Jung and G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods “, Appl. Phys. Lett. 80 4232 (2002)
    [15.] S. H. Park, S. Y. Seo, S. H. Kim and S. W. Han, “Surface roughness and strain effects on ZnO nanorod growth”, Appl. Phys. Lett. 88 251903 (2006)
    [16.] H. Amano, M. Kitoh, K. Hiramatsu, and I. Akasaki, “Growth and Luminescence Properties of Mg-Doped GaN Prepared by MOVPE “, J. Electrochem. Soc. 137, 1639 (1990)

    下載圖示 校內:2014-07-22公開
    校外:2014-07-22公開
    QR CODE