| 研究生: |
王馨珮 Wang, Hsin-Pei |
|---|---|
| 論文名稱: |
以實驗及數值模擬探討圓柱薄壁鋼管受擬靜態與動態載重下之力學行為 Experimental and Numerical Simulation of the Mechanical Behavior of Thin-Walled Steel Cylinders under Quasi-Static and Dynamic Loads |
| 指導教授: |
胡宣德
Hu, Hsuan-Teh |
| 共同指導教授: |
戴毓修
Tai, Yuh-Shiou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 薄壁圓柱金屬管 、擬靜態 、動態 、SHPB 、LS-DYNA 、DIC 、誤差影響性分析 |
| 外文關鍵詞: | thin-walled cylinders, quasi-static, dynamic, DIC, LS-DYNA |
| 相關次數: | 點閱:92 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
薄壁圓柱金屬管因為強度高、成本低且具有良好的吸能能力,因此廣泛作為許多結構體內的吸能元件。本文將其作為研究對象,主要研究範圍包括 (1) 研究薄壁圓柱鋼管受到擬靜態與動態軸向載重下的力學行為 (2) 探討實驗與模擬間誤差因子之影響 (3) 利用實驗以及DIC之結果來驗證數值模擬之精確性。本研究分別利用MTS萬能試驗機與分離式霍普金森壓桿(split Hopkinson pressure bar, SHPB)進行擬靜態與動態軸壓試驗,並建立LS-DYNA數值模型以模擬薄壁圓柱管受軸向載重之行為,而本文也應用數位影像相關法(digital image correlation, DIC)進行全域應變的量測,主要是為了後續數值模擬的驗證,採用之軟體為VIC-2D。由實驗結果發現峰值載重會隨著衝擊速度而增加,導致此現象之原因主要為材料的應變率效應,也發現到動態載重下因為動力塑性挫屈效應使得其載重-位移相較於靜態載重下較不具有規律性。而透過數值模擬以及實驗結果進行誤差影響性分析,發現材料參數、缺陷類型與邊界條件皆為導致兩者差異之因子,因此,本文根據此建立了更符合實際之數值模型,得到與實驗相吻合之結果。
Thin-walled cylinders have been one of the most commonly used energy-absorbing components in many structures which are due to their high strength, low cost and great capabilities of energy absorption. Therefore, the research takes thin-walled tubes as the object of study. The main objectives of the research are (1) to study the behavior of thin walled steel tube subjected to quasi-static and dynamic axial loading. (2) to explore the factor that will lead to discrepancy between experiment and numerical simulation. (3) to validate the accuracy of numerical model through comparing the results among experiment, numerical simulation and DIC. The research explores the mechanical behavior of thin-walled tube under quasi-static and dynamic loads by MTS and SHPB respectively, and found that peak load will increase when impact velocity increase simultaneously because of strain rate effect. Moreover, the load-displacement curve is irregular relative to static condition since dynamic plastic buckling occurs under dynamic condition. Then, establish numerical model by LS-DYNA to predict the crushing conditions. By comparing the simulated results with experiment reveals that some factors such as material property, imperfection mode and boundary condition might lead to discrepancy between experiment and numerical simulation. Hence, the research sets up a more realistic numerical model and obtains the simulated results which give good agreement with the experimental results in both static and dynamic conditions.
[1]Abramowicz W., Jones N., (1984). Dynamic axial crushing of square tubes. Int. J. Impact Engng.2, 179-208.
[2]Abramowicz W. Jones N., (1984). Dynamic axial crushing of circular tubes. Int. J. Impact Engng.2(3):263–281.
[3]Alexander J.M., (1960). An approximate analysis of the collapse of thin cylindrical shells under axial loading. Quart. J. Mech. Appl. Math, 13(1):10–15.
[4]Al Galib D., Limam A., (2004). Experimental and numerical investigation of static and dynamic axial crushing of circular aluminum tubes. Thin-Walled Structures 42 1103–1137.
[5]Andrews, K. R. F., England, G. L., & Ghani, E. (1983). Classification of the axial collapse of cylindrical tubes under quasi-static loading. International Journal of Mechanical Sciences, 25(9-10), 687-696.
[6]Chen X., Liu Z., He G., Xie, H. (2014). A novel integrated tension-compression design for a mini split Hopkinson bar apparatus. Review of Scientific Instruments, 85(3), 035114.
[7]Chree C., (1889). The equation of an isotropic elastic solid in polar and cylindrical coordinates, their solution and applications, Transactions of the Cambridge Philosophical Society 14 250–369.
[8]Davies R. M., (1948). A critical study of the Hopkinson pressure bar. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 240(821), 375-457.
[9]Follansbee P. S., (1985). The Hopkinson bar, Metals Handbook, Vol. 8 Mechanical testing.
[10]Frantz C. E., Follansbee P. S.,Wrigh W. J. t, (1984). New experimental techniques with the split Hopkinson pressure bar. In 8th International conference on high energy rate fabrication (pp. 17-21).
[11]Guillow S.R. ,G. Lu , Grzebieta R.H., (2001).Quasi-static axial compression of thin-walled circular aluminium tubes. International Journal of Mechanical Sciences 43 2103–2123.
[12]Graff K. F., (2012). Wave motion in elastic solids. Courier Corporation.
[13]Hall I. W., Ebil O., Guden M., Yu C.-J., (2001). Quasi-static and dynamic crushing of empty and foam-filled tubes, JOURNAL OF MATERIALS SCIENCE 36 5853 – 5860.
[14]Hallquist John O., (2006). LS-DYNA theory manual.
[15]Holst J. M. F., Rotter J. M., (2005). Axially compressed cylindrical shells with local settlement, Thin-Walled Structures,Volume 43, Issue 5, Pages 811–825.
[16]Hopkinson B., (1914). A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 213, 437-456.
[17]Karagiozova D., Alves M., Jones Norman, (2000). Inertia effects in axisymmetrically deformed cylindrical shells under axial impact. International Journal of Impact Engineering 24 1083-1115.
[18]Karagiozova D., Jones N., (2001). Influence of stress waves on the dynamic progressive and dynamic plastic buckling of cylindrical shells. International Journal of Solids and Structures.Volume 38, Issues 38–39, Pages 6723–6749.
[19]Kolsky H., (1949). An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading,” Proc. Phys. Soc. B62, pp. 676-700.
[20]Kolsky H., (1963). Stress Waves in Solids, Dove Publications Inc., New York.
[21]Langseth M., Hopperstad O.S., (1996). Static and Dynamic Axial Crushing of Square Thin-Walled Aluminium Extrusions. Int. J. Impact Engng Vol. 18, Nos 7-8, pp. 949- 968.
[22]Mancini E., Sasso M., Rossi M., Chiappini G., Newaz G., Amodio D., (2015). Design of an Innovative System for Wave Generation in Direct Tension–Compression Split Hopkinson Bar. J. dynamic behavior mater. 1:201–213
[23]Marsolek J., Reimerdes H. G., (2004). Energy absorption of metallic cylindrical shells with induced non-axisymmetric folding patterns. Thin-Walled Structures 42 1103–1137.
[24]Meyers M. A., (1994). Dynamic behavior of materias. John wiley & sons.
[25]Ming L., Ren W., Mingbao H., (1994). An experimental investigation on the dynamic axial buckling of cylindrical shells using a Kolsky bar, Acta Mech. Sinica, 10(3), 260-266.
[26]Palanivelu S., Pauw S. De, Paepegem W. Van, Degrieck J., Ackeren J. Van, Kakogiannis D., Wastiels J., Hemelrijck D. Van and Vantomme,J. (2009). Validation of digital image correlation technique for impact loading applications. DYMAT 373–379.
[27]Peter W. H., Ranson W . F., (1982). Digital imaging technique in experimental stress analysis.Opt.Eng. 21(3):427-431.
[28]Pochhammer L., (1876). Ueber die Fortpflanzungsgeschwindigkeiten kleiner Schwingungen in einem unbegrenzten isotropen Kreiscylinder. Journal für die reine und angewandte Mathematik, 81, 324-336.
[29]Pugsley A. G., (1979). On the crumpling of thin tubular struts. The Quarterly Journal of Mechanics and Applied Mathematics, 32(1), 1-7.
[30]Pugsley A. G., (1960). The large-scale crumpling of thin cylindrical columns. The Quarterly Journal of Mechanics and Applied Mathematics, 13(1), 1-9.
[31]Ren W., Mingbao H., Zhuping H., Qingchun Y., (1983). An experimental study on the dynamic axial plastic buckling of cylindrical shells. International Journal of Impact Engineering, 1(3), 249-256.
[32]Reyes A., Langseth M., Hopperstad O.S., (2002). Crashworthiness of aluminum extrusions subjected to oblique loading: experiments and numerical analyses. International Journal of Mechanical Sciences, 44(9), 1965-1984.
[33]Schreier H., Orteu J. J., M. A. Sutton, (2009). Image correlation for shape, motion and deformation measurements. Springer US.
[34]Solutions, C. (2009). Vic 2D reference manual.
[35]Simhachalam B., Srinivas K., Rao C. L., (2014). Energy absorption characteristics of aluminium alloy AA7XXX and AA6061 tubes subjected to static and dynamic axial load. International Journal of Crashworthiness, 19(2), 139-152.
[36]Sudalaiyandi A. K., Krishnamurthi R., Prakash R. V., (2016). Large Deformation Strain Measurement Using Digital Image Correlation Technique During Axial Crushing of an Extruded AA-6063 Tube. In ASME 2016 International Mechanical Engineering Congress and Exposition.
[37]Sutton, Michael A., Orteu, Jean Jose, Schreier, Hubert, (2009). Image Correlation for Shape, Motion and Deformation Measurements, Springer US.
[38]Tarlochan F., Samer F., Hamouda A. M. S., Ramesh S., Khalid K., (2013) Design of thin wall structures for energy absorption applications: Enhancement of crashworthiness due to axial and oblique impact forces Thin-Walled Structures, 71, 7-17.
[39]Wierzbicki T., Abramowicz W., (1983). On the crushing mechanics of thin-walledstructures. Journal of Applied Mechanics, 50:727–734.
[40]Wierzbicki T., (1983). Optimum design of integrated front panel against crash, Report for Ford Motor Company, Vehicle Component Dept, 15.
[41]Wierzbicki T., S.U. Bhat, (1986). A moving hinge solution for axisymmetric crushing of tubes. International Journal of Mechanical Sciences Volume 28, Issue 3, Pages 135-151.
[42]Yamazaki K., Han J., (2000). Maximization of the crushing energy absorption of cylindrical shells. Advances in Engineering Software 31 425–434.
[43]Zhao H., Abdennadher S., (2004). On the strength enhancement under impact loading of square tubes made from rate insensitive metals. International Journal of Solids and Structures 41 6677–6697.
[44]Zhao H., Abdennadher S., Othman R., (2006). An experimental study of square tube crushing under impact loading using a modified large scale SHPB. International Journal of Impact Engineering 32 1174–1189
[45]彭軍, (2006). 金屬矩形管軸壓失效模式與能量吸收特性研究, 浙江大學, 碩士學位論文.
[46]黃美雲, (2011). 圓柱形薄壁構件承受衝擊荷重下力學行為之研究, 成功大學土木工程學系學位論文.
[47]蔣小晴, 楊濟匡, 肖志, 葉映台, 郭杰, (2010). 前縱梁碰撞模擬中的焊點建模方法比較.汽車安全與節能學報, 1(4), 327-331.
[48]戴毓修, (2016). 加載速率對超高性能鋼纖維混凝土軸向拉伸力學性質研究,第25屆國防科技學術研討會.