| 研究生: |
林佳宗 Lin, Jia-zong |
|---|---|
| 論文名稱: |
不同增強速率的外加磁場及旋轉對可互溶磁性流體複雜指狀化不穩定現象之研究 Incremental Rates of External Magnetic Fields and Rotating Effect on the Labyrinthine Instabilities of Miscible Magnetic Fluids |
| 指導教授: |
溫志湧
Wen, Chih-yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 柯氏力 、向心力 、Hele-Shaw Cell流場 、複雜指狀化不穩定現象 、三維不穩定現象 |
| 外文關鍵詞: | labyrinthine fingering instability, Hele-Shaw Cell, Centrifugal force, Coriolis force, three dimensional instability |
| 相關次數: | 點閱:78 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究首先以實驗及理論分析來探討Hele-Shaw Cell流場中,在不同磁場強度與不同磁場上升速率下,兩種可互溶磁流體(Miscible Magnetic Fluid) 間的介面不穩定性問題。起始為一個圓形的磁性流體液滴,外層緊鄰可互溶環境流體-柴油,再施以一個均勻向上的垂直磁場,所形成的磁力會造成液滴周圍產生微小的指狀物,稱為複雜指狀化的不穩定現象。
結果顯示當磁性流體磁化強度及導磁率愈低時,其可互溶介面放射性的大波波形越不明顯;而介面周長的成長趨勢在初期呈現快速爬升,但隨著磁場強度增加,在到達實驗所設定的最大磁場值後會慢慢變小,最終趨於一定值。另外,本研究定義一個時間無因次參數 為擴散作用與磁場影響流場的特徵時間比,當其值越大時,外加磁場作用力越強,介面的初始成長率會越大,實驗結果發現介面的初始成長率與 成線性關係,且當 大於1000時,可互溶流體介面會有大波現象的產生,而大波波長(λ)與Hele-Shaw Cell的寬度(h)會有一關係為 ,此大波乃三維不穩定現象。
其次在旋轉Hele-Shaw Cell的實驗中,觀察到了兩種指狀化的現象,第一個是向心力所造成大的指狀物,第二個是由於外加磁場的影響形成細小的指狀物,其細小的指狀物由於擴散作用的影響,造成濃度變低,磁化強度變小,指狀物因而受到柯氏力的影響而呈現順時針旋轉的形狀。
In the first part of this thesis, the interfacial instability of miscible magnetic fluids in a Hele-Shaw Cell is studied, experimentally and theoretically, with different magnitudes and incremental rates of magnetic field. The initial circular oil-based magnetic fluid drop is surrounded by the miscible fluid, diesel. The external uniform magnetic fields induce small fingerings around the initial circular interface, so called labyrinthine fingering instability caused by the magnetic dipolar forces.
It is shown that the lower magnetization and susceptibility of the magnetic fluid, the less the secondary waves around the interface that were dominated by the three-dimensional effects. At the beginning when the magnetic field is applied, the interfacial length grows fast. It then decreases when the magnetic fields reach the selected values, and finally approaches certain asympototic values. In addition, a dimensionless time parameter, , is defined as the ratio of the characteristic diffusion time to the characteristic magnetic time. The larger represents the stronger magnetic fields and the faster initial growth rate. The initial growth rate is directly proportional to . When is larger than 1000, the secondary wave appears. A correlation is found between the secondary wave length (λ) and the gap of the Hele-Shaw Cell (h): .
In the second part of this thesis, two fingering phenomena are observed in a rotating miscible Hele-Shaw cell flow: the large branching pattern which is caused by the centrifugal force and the small fingering pattern which is induced by the external magnetic field. Due to the diffusion, the concentration of the magnetic fluid around each small fingering is getting lower, and the magnetization is weaker, accordingly. Therefore, the Coriolis force becomes important and influences the small fingering pattern.
1. 黃忠良,磁流體理論應用復漢出版社,1988
2. 蘇品書,超微粒子材料技術復漢出版社,1989
3. 下飯阪達,粉體液相中凝集分散粉體粉末冶金,12,6,263,1966
4. 下飯阪達,中缽良治,中塚勝人和左藤惟陽,磁流體製造性質粉體粉末冶金,22,1,22,1975
5. G.W. Reimers, S.E. Khalafalla, “Production of Magnetic Fluids by Peptization Techniques,” Bureau of Mines TPR 59, 13, 1972
6. S. Hill, “Channeling in Packed Colums,” Chemical Engineering Science, Vol. 1, pp. 247-253, 1952.
7. P. Saffman and G. Taylor, “The Penetration of a Fluid Into a Porous Medium or Hele-Shaw Cell Containing a More Viscous Liquid, ”Proceedings of Royal Society of London Series A, Vol. 245, pp. 312-329, 1958.
8. L. Patterson, ”Radial Fingering in Hele-Shaw Cell,” Journal of Fluid Mechanics, Vol. 113, pp. 513-529, 1981.
9. D. Korteweg, ”Sur La Forme Que Prennent Les Equations Du Mouvement Des Fluids Si L’on Tient Compte Des Forces Capillaries Causes Par Des Variations De Densite,” Arch. Neel. Sci. Ex. Nat. (II) 6, 1901.
10. D. Joseph, “Fluid Dynamics of Two Miscible Liquids With Diffusion and Gradient Stresses,” European Journal of Mechanics - B: Fluids, Vol. 9, pp. 565-596, 1990.
11. C.Y. Chen, “Numerical Simulation of Fingering Instabilities In Miscible Magnetic Fluids in Hele-Shaw Cell and The Effects of Korteweg Stresses,” Physics of Fluids, 15, 4, 2003.
12. H. Hu and D. Joseph, “Miscible Displacement in a Hele-Shaw cell,” Zeitschrift fr Angewandte Mathematik und Physik, Vol. 43, pp. 626-644, 1992.
13. I. Drikis, A. Cebers, “Free Boundary Problems: Theory and Applications,” Chapman and Hall/CRC , 1999.
14. D. Jackson, R. Goldstein and A. Cebers, “Hydrodynamics of Fingering Instablilities in Droplet Fluids,” Physical Review E, Vol. 50, pp. 298-309, 1994.
15. M. Maiorov, and A. Cebers, “Magnetic Microconvection on the Diffusion Front of Ferroparticles,” Magnitnaya Gidrodinamika N4, 36, 1983.
16. A. Cebers, “Stabilities of Diffusion Fronts of Magnetic Particles in Porous Media (Hele-Shaw cell) Under the Action of External Magnetic Field,” Magnetohydrodynamics, VOl. 33, No. 1, pp. 48-55, 1997.
17. M. Lgonin and A. Cebers, “Labyrinthine Instability of Miscible Magnetic Fluids,” Physics of Fluids, Vol. 15, No. 6, pp. 1734-1744, 2003.
18. C.Y. Chen, and C.Y. Wen, “Numerical Simulations of Miscible Magnetic Flows in a Hele-Shaw Cell, Part I. Radial Flows,” Journal of Magnetism and Magnetic Matericals, Vol. 252, No. 296, pp. 296-298,Nov., 2002.
19. C.Y. Wen, C.Y. Chen, D.C. Kuan and S.Y. Wu, “Labyrinthine Instability of a Miscible Magnetic Drop,” Journal of Magnetism and Magnetic Matericals, Vol. 310, pp. e1017-e1019, 2007.
20. K. Mccloud, J. Maher, “Experimental Perturbation to Saffman- Taylor Flow,” Physics Report 260, pp. 139-185, 1995.
21. 梁梓奎,“在不同磁場增強速率作用下對可互溶磁性流體複雜指狀化不穩定現象之實驗研究”大葉大學碩士論文,2007
22. L. Paterson, “Fingering with Miscible Fluids in a Hele-Shaw Cell,” Physics of Fluids, Vol. 28, No. 1, pp.26-30, 1985.
23. E. Lajeunesse, J. martin, N. Rakotomalala and D. Salin, “3D Instabilities of Miscible Displacements in a Hele-Shaw Cell,” Physical Review Letter, Vol. 79, No. 26, pp. 5254-5257, 1997.
24. J. Fernandez, P. Kurowski, P. Petitjeans, and E. Meiburg, “Density-driven unstable flows of miscible fluids in a Hele-Shaw Cell,” Journal of Fluid Mechanics, Vol. 451, pp. 239-260, 2002.
25. C.Y. Wen, C.Y. Chen, and D.C. Kuan, “Experimental Studies of Labyrinthine Instabilities of Miscible Ferrofluids in a Hele-Shaw Cell,” Physics of Fluids, Vol. 19, pp. 084101-1 - 084101-8, 2007.
26. L. W. Schwartz, “Instability and Fingering in a Rotating Hele-Shaw Cell or Porous Medium,” Physics of Fluids A, Vol. 1, pp. 167-169, 1989.
27. S. L. Waters and L. J. Cumming, “Coriolis Effects in a Rotating Hele-Shaw Cell,” Physics of Fluids, Vol. 17, pp. 048101-1 - 048101-4,2005.
28. Ll. Carrillo, F. Magdaleno, J. Casademunt, and J. Ortn, “Experiments in a Rotating Hele-Shaw Cell,” Physical Review E, Vol. 54, pp. 6260-6267, 1996.
29. Ll. Carrillo, J. Soriano, and J. Ortn, “Radial Displacement of a Fluid Annulus in a Rotating Hele-Shaw Cell,” Physics of Fluids, Vol. 11, No. 4, pp. 778-785, 1998.
30. Ll. Carrillo, J. Soriano, and J. Ortn, “Interfacial instability of a Fluid Annulus in a Rotating Hele-Shaw Cell,” Physics of Fluids, Vol. 12, No. 7, pp. 1685-1698, 2000.
31. E. Alvarez-Lacalle, J. Ortn, and J. Casademunt, “Low Viscosity Contrast Fingering in a Rotating Hele-Shaw Cell,” Physics of Fluids, Vol. 16, No. 4, pp. 908-924, 2000.
32. H. Gadlha and J. A. Miranda, “Finger Competition Dynamics in Rotating Hele-Shaw Cells,” Physical Review E, Vol. 70, pp. 066308-1 – 066308-8, 2004.
33. J. A. Miranda, ”Rotating Hele-Shaw Cells with Ferrofluids,” Physical Review E, Vol. 62, No. 2, pp. 2985-2988, 2000
34. D. P. Jackson and J. A. Miranda, ”Controlling Fingering Instabilities in Rotating Ferrofluids,” Physical Review E, Vol. 67, pp.017301-1 – 017301-4, 2003.
35. C.Y. Chen and S.W. Wang, “Interfacial Instabilities of Miscible Fluids in a Rotating Hele–Shaw Cell,” Fluid Dynamics Research 30, pp. 315-330, 2002.
36. 蔡長豪,“磁性流體複雜指狀化現象之實驗研究”大葉大學碩士論文, 2004.