| 研究生: |
陳樹友 Chen, Su-Yau |
|---|---|
| 論文名稱: |
鎂合金於AlCl3-EMIC離子液體中鍍鋁層之耐蝕性質研究 Corrosion behavior of an Al coating deposited on Mg alloy from AlCl3-EMIC ionic liquid |
| 指導教授: |
蔡文達
Tsai, Wen-Ta |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 電化學 、鍍層 |
| 外文關鍵詞: | Electrochemical, Coating |
| 相關次數: | 點閱:71 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討利用AlCl3-EMIC離子液體(ionic liquid),在室溫下之鈍態環境(glove box)中,分別以定電位與定電流方式於壓鑄AZ91D鎂合金表面電鍍一鋁鍍層,並探討施加不同之電位與電流值對鋁鍍層表面形貌、厚度、化學成分及結晶結構之影響。最後,以電化學試驗,分析不同條件下備製之鋁鍍層電化學性質及其抗蝕能力差異。
本研究中以掃描式電子顯微鏡(Scanning electron microscopy, SEM)對鎂合金原材與鋁鍍層顯微結構進行觀察,並輔以能量散射光譜(Energy dispersive spectroscopy, EDS)鑑定鍍層之化學組成。鍍層之結晶結構則利用X光繞射分析儀(X-ray diffraction, XRD)。針對鍍層電化學性質,則將試片於室溫中浸置於3.5 wt%氯化鈉水溶液中,利用恆電位儀(Potentiostat 263)進行開路電位測試(Open circuit potential, OCP)及動電位極化測試(Potentiodynamic polarization);另一方面,於相同測試環境中,利用頻率分析儀(Frequency Response Analysis 1255, FRA 1255)進行電化學交流阻抗頻譜測試(Electrochemical impedance spectroscopy, EIS),藉以了解鍍層之耐蝕能力。
實驗結果顯示,未經過處理之鎂合金原材由鎂固溶相(Mg solid solution, α)與介金屬化合物(Intermetallic compound, Mg17Al12)所組成,分別經恆電位與恆電流方式電鍍之後,鎂合金表面均生成一鋁鍍層。然而,於電鍍過程中,施加較低之電位(-200 mV)或電流值(-15,-20 mA/cm2),從表面形貌觀察均可獲得一連續、緻密且具結晶性的鋁鍍層,從橫截面觀察發現鋁鍍層與鎂合金原材間具良好的附著性;另外,上述鋁鍍層經過XRD分析顯示,於此條件下,鋁鍍層主要以(111)進行生長。相反的,當施加較高之電位(-400 mV)或電流值(-40 mA/cm2)時,其鋁鍍層形貌類似瘤狀物,橫截面顯示鍍層比較不平整且與基材間之附著性不佳,其XRD結果顯示其生長方式較以(200)為主,顯示鋁離子之沉積速率對鍍層表面形貌及其結晶結構具關鍵性的影響。
電化學分析結果顯示,鎂合金原材之抗蝕性不佳。然而,於鎂合金表面電鍍一鋁鍍層後,鋁鍍層之開路電位較鎂合金原材有明顯提升,且經動電位測試後,有鈍態區域(Passive region)的生成,且經電化學交流阻抗測試後顯示,鋁鍍層之阻抗值明顯地較鎂合金原材高,顯示鋁鍍層能有效阻絕環境對鎂合金之腐蝕。
Electrodeposition of an aluminum coating on the die-casting magnesium alloy (AZ91D) in AlCl3-EMIC at 25 ℃ has been investigated in this study. Parameters of several current densities/potentials applied to the effect composition, structure and corrosion behavior of aluminum coating was analyzed.
Morphologies and chemical compositions of a bare Mg alloy and Al-coated specimens were examined in a Philip XL-40FEG SEM and its auxiliary energy dispersive spectroscope (EDS). X-ray diffraction (XRD) analysis was also performed with a Rigaku diffractometer to explore the crystal structure. Besides, the corrosion behavior including of open circuit potential (OCP), electrochemical impedance spectra (EIS), and polarization curves of the specimens were measured in 3.5 wt.% NaCl solution using a Solatron 1255 + 263 Potentiostat electrochemical measurement system.
The results showed that a bare Mg alloy was dual-phase structure,consisting of α-Mg and Mg17Al12. After electrodeposition by applied a series of potentials and current densities. An Al-coating layer was deposited on the AZ91D substrate. In the case of applied low potential/current density(-200 mV and -15, -20 mA/cm2) in the electrodeposition, a quite dense and well adhesive Al layer was obtained. XRD showed the preferriental grown on the (111) surface. However, the nodular Al layer grown with relatively poor adhesive was obtained on the (200) by using higher potential/current density(-400 mV and -40 mA/cm2) in the electrodeposition. Consequently, the beneficial effect of the Al-coating varies with the film structure which greatly depends on the electrodeposition condition.
The corrosion resistance of the Mg alloy with and without Al-deposition was also evaluated in 3.5 wt% NaCl solution. The results showed that the corrosion resistance of the Mg-alloy substrate is very poor, but it can be improved after Al-coating deposited on the alloy, having an increase of OCP and polarization resistance. A passive film was abserved in the Al-coating alloy in the potentiodynamic polarization test.
1鎂合金成型產業,經濟部工業局,2006.07。
2 蔡辛甫,鎂合金在電子產品上的應用與產業概況,工業材料,p.62,1999.08。
3蔡辛甫,筆記型電腦應用鎂合金的幾種重大理由,工業材料,p.116,1999.10。
4王文梁,鎂合金與國外汽車產業之應用狀況與研發趨勢,金屬工業,p.58,2000.05。
5廖芳俊,鍛造用Mg-Al-Zn系鎂合金熔銲製程之探討,工業材料,p.169,2001.06。
6蔡辛甫,輕金屬在新世代產品的應用於商機,2002.08。
7蔡辛甫,電子資訊產品機構件金屬化趨勢,2003.03。
8葉哲政,鎂合金在汽車產業之應用,p.1~5,2003.06。
9 G.L. Makar, and J. Kruger, J. Electrochem. Soc. 137 (1990) 414.
10 G. Song, A. Atrens, D. St. John, X. Wu, and J. Nairn, Corr. Sci. 39 (1997) 1981.
11 R. Ambat, N.N. Aung, and W. Zhou, Corr. Sci. 42 (2000) 1433.
12 M. Forsyth, P.C. Howlett, S.K. Tan, D.R. MacFarlane, and N. Birbills, Electrochem. Solid-State Lett. 9 (2006) B52.
13 G. Song, and A. Atrens, Adv. Eng. Mater. 1 (1999) 11.
14 Y. Zhang, C. Yan, F. Wang, H. Lou, and C. Cao, Surf. Coat. Technol. 161 (2002) 36.
15 Z. Shi, and G. Song, A. Atrens, Corr. Sci. 47 (2005) 2760.
16 H.Y. Hsiao, and W.T. Tsai, Surf. Coat. Technol. 190 (2005) 299.
17 H.Y. Hsiao, H.C. Tsung, and W.T. Tsai, Surf. Coat. Technol. 199 (2005) 127.
18 H.Y. Hsiao, P. Chung, and W.T. Tsai, Corr. Sci. 49 (2007) 781.
19 G. L. Makar and J. Kruger, Corrosion of magnesium, International Materials Reviews, Vol.38, No.3, 1993.
20 O. Lunder, J.E. Lein, T.K. Aune, and K. Nisancioglu, Corrosion 45 (1989) 741.
21 G. Song, A. Atrens, X. Wu, and B. Zhang, Corr. Sci. 40 (1998) 1769.
22 G. Song, and A. Atrens, M. Dargusch, Corr. Sci., 41 (1999) 249.
23 G. Song, Adv. Eng. Mater. 7 (2005) 563.
24 H.Y. Hsiao, and W.T. Tsai, J. Mater. Res. 20 (2005) 2763.
25 Shigematsu, M. Nakamura, N. Saitou, K. Shimojima,“Surface treatment of AZ91D magnesium alloy by aluminum diffusion coating”, J. Mater. Sci. Letter 19 (2000) 473-475.
26 N. N. Aung, and W. Zhou,“Effect of heat treatment on corrosion and electrochemical behaviour of AZ91D magnesium alloy”, J. Appl. Electrochemistry 32: 1397-1401, 2002.
27 M-X. Zhang, and P. M. Kelly,“Surface alloying of AZ91D alloy by difdusion coating”, J. Mater. Res., Vol. 17, No. 10, Oct 2002, p. 2477-2479.
28 J Zhang, ZF Sun, and H Ye, “Microstructure Analysis of Aluminum Spraying Coating on AZ91D Magnesium Alloy”, Materials Protection (China). Vol. 36, no. 6, pp. 17-18. June 2003.
29M. Avedesian and H. Baker, Magnesium and magnesium alloys, ASM Specialty Handbook, 1999.
30 M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solution, NACE, Houston, TX, USA, 1974.
31 A. L. Rudd, C. B. Breslin, and F. Mansfeld, “The corrosion protection afforded by rare earth conversion coatings applied to magnesium”, Corrosion science, 42, (2000), 275.
32 L. Kouisni, M. Azzi, M. Zertoubi, F. Dalard, and S. Maximovitch, “Phosphate on magnesium alloy AM60 part 1: study of the formation and the growth of zinc phosphate films”, Surface and coatings technology, 185, (2004), 58.
33 K. Mori, H. Hirahara, Y. Oishi, and N. Kumagai, “Polymer plating of 2-diotylamino- 1,3,5-triazine-4,6-dithiol to magnesium alloys”, Electrochemical and solid-state letters, 3, 12(2000)546.
34 K. Mori, H. Hirahara, Y. Oishi, and H.Sasaki, “Polymer plating of 6-substituted- 1,3,5-triazine-2,4-dithiol on magnesium alloys and applications of plate alloys”, Materials transactions, 42, 7(2001)1219.
35 S. Ono, K. Asami, and N. Masuko, “Mechanism of chemical conversion coating film growth on magnesium ad magnesium alloy”, Materials transactions, 42, 7, (2001), 1225.
36 L. Kouisni, M. Azzi, M. Zertoubi, F. Dalard, and S. Maximovitch, “Phosphate on magnesium alloy AM60 pare 2: electrochemical behavior in borate buffer solution”, Surface and coatings technology, 192, (2005), 239.
37 D. Hawke, and D. L. Albright, “A phosphate-permanganate conversion coating for magnesium”, Metal finishing, 93(1995)34.
38 M. A. Gonzalez-Nunez, C. A. Nunez-Lopez, P. Skeldon, G. E. Thompson, H. Karimzadeh, P. Lyon, and T. E. Wilks, “A non-chromate conversion coating for magnesium alloys and magnesium-based metal matrix composites”, Corrosion science, 37(1995)1763.
39 M. A. Gonzalez-Nunez, P. Skeldon, G. E. Thompson, and H. Karimzadeh, “Kinetics of the development of a nonchromate conversion coating for magnesium alloys and magnesium-based metal matrix composites”, Corrosion, 55(1999)946.
40 C. S. Lin, and S. K. Fang, “Formation of cerium conversion coating on AZ31 magnesium alloys”, Journal of the electrochemical society, 152, 2(2005)B54.
41 A. L. Rudd, C. B. Breslin, and F. Mansfeld, “The corrosion protection afforded by rare earth conversion coatings applied to magnesium”, Corrosion science, 42(2000)275.
42 S. Ono, K. Asami, and N. Masuko,“Mechanism of chemical Conversion Coating Film Growth on Magnesium and magnesium Alloys”, Materials Transactions, Vol.42, 2001, pp.1225-1231.
43 D. Hawke, and K. Gaw,“Effects of Chemical Surface Treatments on the Performance of an Automotive Paint System on Die Cast Magnesium”, SAE Technical Paper 920074, Society of Automotive Engineers, Pittsburigh, 1992.
44 K. Huber, “Anodic formation of coatings on magnesium. Zinc, and cadmium”, Journal of the elrctrochemical society, 100, 8, (1953), 376.
45 O. Khaselev, and J. Yahalom, “The anodic behavior of binary Mg-Al alloys in KOH-Aluminate solution”, Corrosion science, 40, 7(1998)1149.
46 M. Takaya, “Anodizing of magnesium alloys in KOH-Al(OH)3 solutions”, Aluminium, 65(1989)1244.
47 S. J. Kim, R. Ichino, and M. Okido, “Characterization of anodic films formed on Mg-Al alloys in alkaline bath”, Materials science forum, 426-432(2003)3427.
48 H. Umehara, H. Takaya, and I. Tsukuba, “Corrosion resistance of the die casting AZ91D magnesium alloys with paint finishing”, Aluminium, 75(1999)634.
49 V. T. Truong, P. K. Lai, B. T. Moore, R. F. Muscat, and M. S. Russo, “Corrosion protection of magnesium by electroactive polypyrrole/paint coatings”, Synthetic Metals, 110(2000)7.
50 R. H. Unger, Thermal spray coating, in ASM handbook: corrosion, 13(1987)459.
51 G. Garces, M. C. Cristina, M. Torralba, and P. Adeve, “Texture of magnesium alloy films growth by physical vapour deposition (PVD)”, Journal of alloys and compounds, 309(2000) 229.
52 K. T. Rie, and J. Whole, “Plasma-CVD of TiCN and ZrCN films n light metals”, Surface and coatings technology, 112(1999)226.
53 C. Sella, J. Lecoeur, Y. Sampeur, and P. Catania, Surface and coatings technology, (1993)287.
54 S. Fukumoto, K. Sugahara, A. Yamamoto, and H. Tsubakino, “Improvement of corrosion resistance and adhesion of coating layer for magnesium alloy coated with high purity magnesium”, Materials transactions, 44, 4(2003)518.
55 H. Tsubakino, A. Yamamoto, S. Fukumoto, A. Watanabe, K. Sugahara, and H. Inoue, “High-purity magnesium coating on magnesium alloys by Vapor deposition technique for improving corrosion resistance”, Materials transactions, 44, 4(2003) 504.
56 U. Kutschera, and R. Galun, Wear behavior of laser surface treated magnesium alloys, in: magnesium technology 2000, The minerals, Metals and Materials society, (2000)330.
57 T. M. Yue, A. H. Wang, and H. C. Man, “Corrosion resistance enhancement of magnesium ZK60/SiC composite by Nd:YAG laser cladding”, Scripta materialia, 40, 3(1999)303.
58 J. D. Majumdar, B. R. Chandra, B. L. Mordike, R. Galun, and I. Manna, “Laser surface engineering of a magnesium alloy with Al+Al2O3”, Surface and coatings technology, 179(2004)297.
59 H. Huo, and Y. Li, F. Wang, “Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless niclel layer”, Corrosion science, Vol. 46, no. 6, pp. 1467-1477. June 2004.
60 Z. Liu, and W. Gao, “The effect of substrate on the electroless nickel plating of Mg and Mg alloy”, Surface and coatings technology, p. 3553-3560, (2006)200.
61 J. Li, Z. Shao, X. Zhang, and Y. Tian, “The electroless nickel-plating on magnesium alloy using NiSO4‧6 H2O as the main salt”, Surface and coating technology, Vol. 200, Issue 9, February 2006, p. 3010-3015.
62 A. K. Sharma, M. R. Suresh, H. Bhojraj, H. Narayanamurthy, and R. P. Sahu, “Electroless nickel plating on magnesium alloy”, Metal finishing, 3(1998)10.
63 M.-H. Yang, M.-C. Yang, and I-W. Sun, “Electrodeposition of indium antimonide from the water-stable 1-ethyl-3-methylimidazolium chloride-tetrafluoroborate ionic liquid”, Journal of The Electrochemical Society, 150 (8) C544-C548 (2003).
64 S.-I. Hsiu, C.-C. Tai, and I.-W. Sun,“Electrodeposition of palladium-indium from 1-ethyl-3-methylimidazolium chloride tetrafluoroborate ionic liquid”, Electrochimica Acta 51 (2006) 2607–2613.
65 C.-C. Tai, F.-Y. Su, and I.-W. Sun, “Electrodeposition of palladium-silver in a Lewis basic 1-ethyl-3-methylimidazolium chloride-tetrafluoroborate ionic liquid”, Electrochimica Acta 50 (2005) 5504–5509.
66 J.-F. Huang, and I.-W. Sun, “Electrodeposition of PtZn in a Lewis acidic ZnCl2-1-ethyl-3-methylimidazolium chloride ionic liquid”, Electrochimica Acta 49 (2004) 3251–3258.
67 F. C Walsh, and M. E Herron,“Electrocrystallization and electrochemical control of crystal growth: fundamental considerations and electrodeposition of metals”, J. Phys. D, Appl. Phys. 24 (1991) 275-225.
68 張世傑,國立交通大學材料所碩士論文,民國89年。
69 楊明桓,國立成功大學化學所碩士論文,民國91年。
70 R. Winand,“Electrocrystallization: Fundamental considerations and application to high current density continuous steel sheet plating”J. Appl. Electrochemistry, Vol. 21, No.5 (1991) 377-385.
71 R. Greef, R. Peat, L. M. Peter, D. Pletcher and J. Robinson,“Instrumental Methods in Electrochemistry”, John Wiely & Sons, New York (1985).
72 D. Pletcher,“A First Course in Electrode Processes ”, The Electrochemical Consultancy, England (1991).
73 D. Pletcher, and F. C. Walsh, “Industrial Electrochemistry”Blackie Academic & Professional (1990).
74 楊榮川,“機械工程手冊3:金屬材料。”,五南圖書出版公司,2002年1月。
75 J. E. Hatch,“Aluminum properties and physical metallurgy”, American Scciety for Metals, 1984.
76 R. E. Reed-Hill, “Slip System in Different Crystal Forms”,Physical Metallurgy Principles, 3th Edition, 1994, pp.140~146.
77 R. W. Cahn, and P. Haasen, “Crystal Structures of The Metallic Elements”, Physical Metallurgy, Third revised and enlarged edition.
78 T. Jiang, M. J. C. Brym, G. Dubé, A. Lasia, and G. M. Brisard, Surf. Coat. Technol. 201 (2006) 1.
79 Q. X. Liu, S. Zein, E. Abedin, and F. Endres, Surf. Coat. Technol. 201 (2006) 1352.
80 A. A. Fannin, Jr. D., A. Floreani, L. A. King, J. S. Landers, B. J. Piersma, D. J. Stech, R. L. Vaughn, J. S. Wilkes, and J. L. Wiliams, J. Phys. Chem., 88, 2614 (1984).
81 J. S. Wilkes, J. A. Levisky, R. A. Wilson., C. L. Hussey, Inorg. Chem., 21, 1263(1982).
82 P. K. Lai, and M. S. Kazacos, J. Electroanal. Chem. 248 (1988) 431.
83 R. T. Carlin, and R. A. Osteryoung, J. Electrochem. Soc. 136 (1989) 1409.
84 T. J. Melton, J. Joyce, J. T. Maloy, J. A. Boon, and J. S. Wikes, J. Electrochem. Soc. 137 (1990) 3865.
85 R. L. Perry, K. M. Jones, W. D. Scott, Q. Liao, and C. L. Hussey,“ Densities, Viscosities, and Conductivities of Mixtures of Selected Organic Cosolvents with the Lewis Basic Aluminum Chloride + 1-Methyl-3-ethylimidazolium Chloride Molten Salt”, Journal of Chemical and Engineering Data 40, (1995) 615.