簡易檢索 / 詳目顯示

研究生: 潘俊宏
Pan, Jun-Hong
論文名稱: 錳鋅鐵氧磁體應用於二氧化碳甲烷化之研究
The Study of (Mn,Zn)-ferrite applied for CO2 methanation
指導教授: 黃啟祥
Huang, Qi-Xiang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 92
中文關鍵詞: 甲烷化鐵氧磁體
外文關鍵詞: ferrite, methanation
相關次數: 點閱:57下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   CO2造成的溫室效應使得全球溫度不斷升高,全球各地的氣候異常,因此如何有效降低大氣中CO2的含量便成為重要的課題。
      本研究旨在以水熱法製備高表比面積之( MnxZn1-x)Fe2O4觸媒粉末。檢討H2還原濃度對該觸媒粉末活化之影響,以及觸媒粉末組成、活化時間、反應溫度對CO2分解和甲烷化之影響。實驗是以硝酸鐵、硝酸錳和硝酸鋅鹽為起始原料,氨水為沈澱劑,利用水熱法來製備奈米級之錳鋅鐵氧磁體觸媒粉末,並藉由XRD、BET及GC等儀器之分析與觀察,瞭解合成粉體的各種特性。
      150℃ 2 h之水熱條件下所合成之( MnxZn1-x)Fe2O4觸媒粉末,其比表面積為81.5 ~ 124.0 m2/g,孔隙大小則為6.36 ~ 14.1 nm。此粉末經H2還原後,約於220℃開始與H2反應,產生氧空缺之結構;當還原時間超過2 h,則會有wustite結構之產生。
      在CO2分解反應方面,( MnxZn1-x)Fe2O4觸媒之填充量為2 g、還原氣體H2濃度為50 vol % 和反應氣體CO2 流速為5 sccm時,( Mn0.33Zn0.66)Fe2O4觸媒有較佳之CO2反應氣體轉化量。在CO2甲烷化反應方面,( MnxZn1-x)Fe2O4於反應溫度300℃,與H2/CO2反應後,產物氣體無法檢測出CH4,於350℃以上產物氣體才有CH4,但CH4產率仍不高。

      The greenhouse effect as a result of CO2 causes the raise of earth temperature and unusual weather phenomenon. Nowadays it is an important topic to find the way of CO2 reduction.

      Ferrite powders of high specific surface area were synthesized by the hydrothermal treatment. The effect of H2 concentration on the catalyst activation were investigated. The composition of the catalysts, the time of activation and the reaction temperature for CO2 decomposition and methanation were studied, too. Ferrite powders were synthesized under hydrothermal conditions ( 150℃ for 2 h) by precipitating from metal nitrates with aqueous ammonia. Synthesized powders were characterized by XRD, TEM, GC, etc. The results show that:

      Mn-Zn ferrite catalysts with high specific area ( 81.5 ~ 124.0 m2/g) and nano pore size (6.36 ~ 14.1 nm) were synthesized by hydrothermal treatment. ( MnxZn1-x )Fe2O4-δ were obtained by flowing H2 through ( MnxZn1-x)Fe2O4 above 220℃; Wustite structure were formed by flowing H2 through ( MnxZn1-x)Fe2O4 after 2 h.

      ( Mn0.33Zn0.66)Fe2O4 Catalysts showed the best CO2 decomposition performance after 50 % H2 reduction at 300℃ for 3h. CH4 was produced only ( Mn0.33Zn0.66)Fe2O4 when reacted with H2/CO2 above 350℃; but the CH4 yield was still low.

    中文摘要……..………………………………………………………I 英文摘要……………………………………………………………Ⅱ 目錄……………………………………………………………………Ⅲ 表目錄…………………………………………………………………Ⅷ 圖目錄…………………………………………………………………Ⅷ 第一章 序論……………………………………………………………1 1-1 前言………………………………………………………………1 1-2 溫室效應簡介……………………………………………………2 1-2-1 溫室效應成因…………………………………………………2 1-2-2 溫室效應對地球的影響………………………………………3 1-2-3 國際議題………………………………………………………4 1-2-4 二氧化碳之來源與基本性質…………………………………5 1-3 二氧化碳之處理技術分類………………………………………6 1-3-1 二氧化碳儲存技術……………………………………………6 1-3-2 二氧化碳固定技術……………………………………………7 1-3-3 二氧化碳轉化技術……………………………………………8 1-4 甲烷的用途………………………………………………………10 第二章 理論基礎與前人研究………………………………………14 2-1 奈米觸媒…………………………………………………………14 2-1-1 奈米微粒………………………………………………………14 2-1-2 奈米微粒的觸媒性質…………………………………………14 2-1-3 奈米微粒的表面效應…………………………………………16 2-2水熱合成法………………………………………………………17 2-2-1概述……………………………………………………………17 2-2-2 水熱反應系統…………………………………………………17 2-2-3 水熱反應機構…………………………………………………19 2-2-4 高壓反應釜反應容積與溫度之關係…………………………21 2-2-5水熱法製備粉體的優點………………………………………21 2-2-6水熱製程的改進………………………………………………22 2-3尖晶石型鐵氧磁體………………………………………………24 2-4 吸附理論…………………………………………………………25 2-4-1 物理吸附………………………………………………………25 2-4-2化學吸附………………………………………………………26 2-5 催化………………………………………………………………27 2-5-1 催化作用的含義………………………………………………27 2-5-2 反應動力學……………………………………………………27 2-5-3 反應動力學………………………………………………….28 2-6 鐵氧磁體催化反應之特性………………………………………30 第三章 實驗方法與步驟………………………………………………36 3-1 粉末製備流程……………………………………………………36 3-2 觸媒粉末之製備…………………………………………………37 3-2-1 起始原料………………………………………………………37 3-2-2 混合……………………………………………………………37 3-2-3 水熱處理………………………………………………………37 3-2-4 離心、乾燥與研磨……………………………………………37 3-3 觸媒物性之鑑定…………………………………………………38 3-3-1 設備說明………………………………………………………38 3-3-2 氫氣之程溫還原………………………………………………39 3-3-2-1 觸媒之填充…………………………………………………39 3-3-2-2 程溫還原……………………………………………………39 3-4 觸媒反應…………………………………………………………40 3-4-1 設備說明………………………………………………………40 3-4-2 實驗步驟………………………………………………………41 3-4-2-1 觸媒之填充…………………………………………………41 3-4-2-2 觸媒之活化…………………………………………………41 3-4-2-3 二氧化碳分解反應…………………………………………41 3-4-2-4 二氧化碳甲烷化反應………………………………………42 3-5 性質分析及觀察方法……………………………………………42 3-5-1 X射線繞射儀…………………………………………………42 3-5-2 自動氣相物理吸附儀…………………………………………42 3-5-3 穿透式電子顯微鏡……………………………………………43 3-5-4 熱重熱差分析…………………………………………………43 3-6合成粉末之名稱…………………………………………………43 第四章 結果與討論…………………………………………………49 4-1 錳鋅鐵氧磁體粉末………………………………………………49 4-1-1 相分析…………………………………………………………49 4-1-2粉體粒徑大小…………………………………………………49 4-1-3 孔隙測試………………………………………………………50 4-1-4 粒子形態分析…………………………………………………50 4-2 觸媒活化…………………………………………………………50 4-2-1 活化時間和濃度對鐵氧磁體結構之影響……………………50 4-2-2熱重分析…………………………………………………………51 4-2-3 氫氣之程溫還原………………………………………………52 4-2-4 活化後之粉體性質……………………………………………52 4-3 二氧化碳分解反應………………………………………………53 4-3-1 不同氫氣濃度對觸媒反應之影響……………………………53 4-3-2 錳鋅鐵氧磁體配比對觸媒反應之影響………………………54 4-3-3 觸媒反應後之粒子形態分析…………………………………55 4-4 二氧化碳甲烷化反應……………………………………………55 4-4-1反應氣體流速和溫度對CO2轉化率的影響……………………55 4-4-2 錳鋅鐵氧磁體組成配比對CO2甲烷化之影響………………56 4-4-3氫氣還原時間對CO2甲烷化之影響……………………………57 4-4-4觸媒填充量對CO2甲烷化之影響………………………………57 4-4-5反應溫度對CO2甲烷化之影響…………………………………57 4-4-6氫氣還原濃度對CO2甲烷化之影響……………………………58 4-4-7反應氣體有無氫氣對CO2轉化率之影響………………………58 第五章 結 論…………………………………………………………81 參考文獻………………………………………………………………83 表目錄 Table1-1 Catalysts for CO2 methanation………………………………………………12 Table1-2 Ferrite Catalysts for CO2 methanation……………………………………13 圖目錄 Fig. 2-1 The surface atoms of single cubic structure……………………………31 Fig. 2-2 Illustration of precipitation reaction processed crystal growth…………………………………………………………………………………………32 Fig. 2-3 (a) Relationship between temperature and pressure (b) Relationship between temperature and density…………………………………………………………33 Fig. 2-4 Illustration of the relationship between the volume of liquid phase and vapor pressure in autoclave………………………………………34 Fig. 2-5 (a) Spinel structure, and (b) sub-lattice structure…………………35 Fig. 3-1 Schematic diagram of temperature programmed reaction………………44 Fig. 3-2 The temperature- time diagram of H2-TPR…………………………………45 Fig. 3-3 Schematic diagram of catalytic reaction system for CO2 decomposition and methanation…………………………………………………………………………………46 Fig. 3-4 The temperature-time diagram of CO2 decomposition and methanation reaction………………………………………………………………………………………47 Fig. 3-5 The automation physic adsorbability analysis meter…………………48 Fig.4-1 XRD patterns of (MnxZn1-x)Fe2O4 powders hydrothermally treated at 150℃ for 2 h…………………………………………………………………………………………60 Fig. 4-2 Specific surface area and particle size of (MnxZn1-x)Fe2O4 Powders hydrothermally treated at 150℃ for 2 h…………………………61 Fig. 4-3 Average pore size and micropore surface area of (MnxZn1-x)Fe2O Powders hydrothermally treated at 150℃ for 2 h…………………………………………………………………………………………62 Fig. 4-4 TEM photographs of (a) MZ-11 (b) MZ-12 (c) MZ-14 synthesized powders and (d) diffraction pattern of MZ-12………………………………………………………63 Fig.4-5 XRD patterns of MZ-14 powders annealed at 300℃for various time and 50 ~ 100 % H2………………………………………………………………………………………64 Fig.4-6 XRD patterns of (Mn0.2 Zn0.8)Fe2O4 powders reduced by 50 % H2 / 50 % N2 gas at 300℃ for 8 h.………………………………………………………………………65 Fig.4-7 TG curves of (Mn0.2Zn0.8)Fe2O4 powder under (a)flowing air by raising temperature from R.T. to 280℃ and (b) flowing H2 by raising temperature from R.T. to 400℃…………………………………………………………………………………66 Fig. 4-8 H2-TPR of (MnxZn1-x)Fe2O4 powders annealed to 400 ℃ in 50 % H2 / 50 % N2 with 10℃min-1 and soaking 20 mins…………………………67 Fig. 4-9 Specific surface area and of (Mn0.33Zn0.66)Fe2O4 after 10% ~ 100% H2 (flow rate : 100 sccm) reduction at 300℃ for 3 h.………………………………68 Fig. 4-10 Chromatograms of (Mn0.5Zn0.5)Fe2O4 catalysts for CO2 decomposition reduced in various H2 concentrations at 300℃……………………69 Fig.4-11 Chromatograms of (Mn0.2Zn0.8)Fe2O4 catalysts for CO2 decomposition reduced in various H2 concentrations at 300℃……………………70 Fig.4-12 Chromatograms of (Mn0.2Zn0.8)Fe2O4 catalysts for CO2 decomposition reduced in 50 % H2 for 3 h at 300℃at various time.……………………………………………………………………………………………71 Fig.4-13 Comparison of CO2 decomposition performance with (MnxZn1-x)Fe2O4 reduced in 50 % H2 for 3 h 300℃.……………………….72 Fig.4-14 TEM photographs of (a) (Mn0.2 Zn0.8)Fe2O4 and (b) (Mn0.2 Zn0.8)Fe2O4 reduced in 50 % H2 for 3 h at 300℃ and reacted with 100 % CO2 (Flow rate:5 sccm)……………………………………………………………………………………………73 Fig.4-15 Comparison of CO2 conversion with time by (Mn0.33Zn0.66)Fe2O4 reduced in 50 % H2 for 3 h and reacted with (a) CO2 and H2 at 25 sccm (CO2 :H2 =1:4) at 300℃ (b) CO2 and H2 at 10 sccm (CO2 :H2 =1:1) at 300℃ (c) CO2 and H2 at 10 sccm (CO2 :H2 =1:1) at 400℃……………………………………………………………………………………………74 Fig.4-16 Chromatograms of (MnxZn1-x )Fe2O4 catalysts reduced by 50 % H2 for CO2 methanation at 300 ℃ when passing CO2 and H2 at 10 sccm (CO2:H2= 1:1).…………………………………………………………………………………………………75 Fig. 4-17 Chromatograms of (Mn0.2Zn0.8 )Fe2O4 catalysts reduced by 50 % H2 at 300 ℃ for 2-5 h when passing CO2 and H2 at 10 sccm (CO2:H2= 1:1).…………………………………………………………………………………………………76 Fig.4-18 Chromatograms of (a) 2 g and (b) 3 g (Mn0.33Zn0.66 )Fe2O4 catalysts reduced by 50 % H2 at 300 ℃ for 3 h when passing CO2 and H2 at 10 sccm (CO2:H2= 1:1).……………………………………………………………………………………………77 Fig.4-19 Chromatograms of (Mn0.33Zn0.66 )Fe2O4 catalysts reduced by 50 % H2 at 300 - 400 ℃ when passing CO2 and H2 at 10 sccm (CO2:H2= 1:1).………………………………………………………………………………………………78 Fig.4-20 Chromatograms of (Mn0.33Zn0.66 )Fe2O4 catalysts reduced by 10 – 100 % H2 at 400 ℃ when passing CO2 and H2 at 10 sccm (CO2:H2= 1:1).……………………………………………………………………………………………79 Fig.4-21 Comparison of CO2 conversion with reduced by 50 % H2 at 300℃ and passing 100 % CO2 (flow rate : 5 sccm) or CO2/H2 (flow rate : 10 sccm).…………………………………………………………………………………………80

    [1] 陳維新, 江金龍, “空氣污染與防制”, 高立圖書有限公司 (2001).

    [2] H. Sakurai, M. Haruta, “Carbon Dioxide and Carbon Mnoxide Hydrogenation over
    Gold Supported on Titanium, Iron and Zinc Oxides”, Applied Catalysis, 127, 93-105 (1995).

    [3] H. Ando, M. Fujiwara, Y. Matsumura, H. Miyamura and Y. Souma,
    “ Methanation of Carbon Dioxide over LaNi4X type Catalysts”,
    Energy Convers. Mgmt, 36, 653-656 (1995).

    [4] Y. Souma, H. Ando, M. Fujiwara and R. Kieffer, “Catalytic
    Hydrogenation of Carbon Dioxide to Hydrocarbons”, Energy
    Convers. Mgmt, 36, 593-596 (1995).

    [5] H. Ando, M. Fujiwara, Y. Matsumura, H. Miyamura, H. Tanaka and
    Y. Souma, “Methanation of Carbon Dioxide over LaNi4X type
    Intermetallic compounds as catalyst precursor”, J. Alloys and
    Compounds, 223, 139-141 (1995).

    [6] M. Yamasaki, M. Komori, E. Akiyama, H. Habazaki, A. Kawashima,
    K. Asami and K. Hashimoto, “CO2 Methanation Catalysts Prepared
    from Amorphous Ni-Zr-Sm and Ni-Zr-misch Metal Alloy
    Pecursors”, Mater. Sci. and Engin., 267, 220-226 (1999).

    [7] S. Mori, W. C. Xu, T. Ishidzuki, N. Ogasawara, J. Imai, K. Kobayashi, “
    Mechanochemical activation of catalysts for CO2 methanation”, Applied
    Catalysis A: General 137, 255-268 (1996).

    [8] M.Marwood, R. Doepper, A. Renken, “In-situ surface and gas phase
    analysis for kinetic studies under transient conditions “ Applied catalysis
    A: General 151, 223-246 (1997).

    [9] A. E. Aksoylu, D L. Trimm, “ Structure / activity relationships in
    coprecipitated nickel-alumina catalysts using CO2 adsorption and
    methanation”, Applied Catalysis A: General 145, 185-193 (1996).

    [10] M. Yamasaki, H. Habazaki, T. Yoshida, E. Akiyama, A. Kawashima,
    “ Compositional dependence of the CO2 methanation activity of
    Ni/ZrO2 catalysts prepared from amorphous Ni-Zr alloy precursors”
    Applied Catalysis A: General 163, 187-197 (1997).

    [11] M Le Bras, M Agounaou, L Gengembre, H Baussart, JM Leroy,
    “ Influence of a reduction process on the catalytic performances of
    BixGd1-xVO4 catalysts for the hydrogenation of carbon dioxide”, J.
    Chim. Phys., 93, 331-354 (1996).

    [12] 袁中新, 洪崇軒,”溫室氣體二氧化碳之常溫光催化還原技術研
    究”, 行政院環境保護署 (2002).

    [13] G.R. Dey, A.D. Belapukar, K. Kishore, “ Photo-catalytic reduction of
    carbon dioxide to methane using TiO2 suspension in water”, J.
    Photochemistry and Photobiology A: Chemistry 163, 503-508
    (2004).

    [14] M. Tsuji, H. Kato, T. Kodama, Shin Ger Chang, N. Hesegawa and
    Y. Tamaura,” Methanation of CO2 on H2-Reduced Ni(II)- or Co(II)-
    Bearing Ferrites at 300℃”, J. Mater. Sci., 29, 6227-6230 (1994).

    [15] T. Kodama, Y. Kitayama, M. Tsuji and Y. Tamaura,” Methanation of
    CO2 Using Ultrafine NiFe3-xO4”, Energy, 22(2/3), 183-187 (1997).

    [16] H. Kato, T. Sano, Y. Wada, Y. Tamaura, M. Tsuji,” Methanation of
    CO2 with the Oxygen-Deficient Ni(II)- Ferrite under Dynamic
    Conditions”, J. Mater. Sci., 30, 6350-6354 (1995).

    [17] M. Tsuji, T. Kodama, T. Yoshida, Y. Kitayama and Y. Tamaura,
    “ Preparation of CO2 Methanation Activity of an Ultrafine Ni(II)
    Ferrite Catalyst”, J. Cata., 164, 315-321 (1996).

    [18] M. Tsuji, K. Nishizawa, T. Yoshida and Y. Tamaura,” Methanation
    reactivity of Carbon Deposited Directly from CO2 on to the Oxygen
    Deficient Magnetite”, J. Mater. Sci., 29, 5481-5484 (1994).

    [19] K. Nishizawa, H. Kato, K. Mimori, T. Yoshida, N. Hasegawa,
    M. Tsuji and Y. Tamaura,” Methanation of Carbon Deposited
    Directly from CO2 on Rhodium-bearing Activated Magnetite”,
    J. Mater. Sci., 29, 768-772 (1994).

    [20] T. Yoshida, K. Nishizawa, M. Tabata, H. Abe, T. Kodama,
    M. Masamichi and Y. Tamaura, “ Methanation of CO2 with H2-
    reduced Magnetite”, J. Mater. Sci., 28, 1220-1226 (1993).

    [21] M.Tabata, Y. Tamaura, “Complete Reduction of Carbon-Dioxide to
    Carbon Using Cation-Excess Magnetite”, Nature, 346, 19, 255-256
    (1990).

    [22] Chun-lei Zhang, Shuang Li, Li-jun Wang, Tong-hao Wu and Shao-yi
    Peng,”Studies on the Decomposition of Carbon Dioxide into Carbon
    with Oxygen-Deficient Magnetite”, Mater. Chem. and Phys., 62, 44-
    51 (2000).

    [23] T. Kodama, H. Kato, N. Hasegawa, M. Tsuji and Y. Tamaura,
    “Decomposition of CO2 to Carbon by H2- reduced Ni(II)- and
    Co(II)- bearing ferrites at 300℃”, J. Mater. Res., 9(2), 462-467
    (1994).

    [24] M. Tabata, H. Kato, T. Kodama, T. Yoshida, M. Tsuji and
    Y. Tamaura,”CO2 Decomposition with Mangano-Wustite”, J. Mater. Sci., 29, 999-1003 (1994).

    [25] Jung-Sik Kim, Jung-Ryul Ahn, Chang Woo Lee, Y. Murakami and
    D. Shindo,” Morphological Properties of Ultra-Fine (Ni-Zn)-Ferrites
    and Their Ability to Decompose CO2”, J. Mater. Chem., 11, 3373-
    3376 (2001).

    [26] M. Tabata, Y. Nishida, T. Kodama, K. Mimori, T. Yoshida, Y.
    Tamaura, “ CO2 Decomposition with Oxygen-Deficient Mn(II)
    Ferrite”, J. Mater. Sci., 28, 971-974 (1993).
    [27] H. Kato, T. Kodama, M. Tsuji, Y. Tamaura, “ Decomposition of
    carbon dioxide to carbon by hydrogen-reduced Ni (ii)- bearing
    ferrite”, J. Mater. Sci., 29, 5689-5692 (1994).

    [28] P.E. Matijevic, “Colloid Science of Composite Systems”, in Science
    of Ceramic Chemical Pcocessing, Edited by L.L. Hench and D.R.
    Ulrich. Wiley, New York, 463-481 (1986).

    [29] Horry Robbins, “The Preparation of Mn-Zn Ferrite by Co-
    precipitation”, Proceeding ICF4, Japan, 7-10 (1980).

    [30] K. Oda, T. Yoshio, K. Hirata, K. O-Oda and K. Takahashi,
    “Preparation of Barium Ferrites from Metal Alkoxide”, J. Jpn. Soc.
    Powder Metal, 29(5), 170-175 (1982).

    [31] M. Kumazawa, H. M. Cho, E. Sada, “Hydrothermal Synthesis of
    barium ferrite fine particles from goethite”, Champman &Hall,
    5247-5250 (1993).

    [32] A. Clearfield, A. M. Gadalla, W. H. Marlow and T. W. Livingston,
    “Synthesis of Ultrafine Grain Ferrites”, J. Am. Ceram. Soc., 72(10),
    1798-1792 (1989).

    [33] 林文豪, 錳鋅鐵氧磁體粉末之製備、燒結性及其燒結體之研究,
    國立成功大學材料科學及工程研究所博士論文 (2000).

    [34] 要之勤, 水熱法合成(MnxZn1-x)Fe2O4鐵氧磁體粉末之特性研
    究,國立成功大學材料科學及工程研究所學士論文(2002).

    [35] 王能誠,二氧化碳還原用鐵氧磁體觸媒之製備及其特性研究, 國立成功大學材料科學及工程研究所碩士論文 (2001).

    [36] M. Ozaki, K. Takeuchi, Y. Fujioka, K. Sonoda, Y. Suetake,” Studies
    on Dispersion of Refrigerant Composition for Multi-Air Condition-
    ers with Non-Azeotropic Refrigerant Mixture”, Technical Review,35
    (2), 34-40 (1998).

    [37] I. Tomoyuki, “Highly Effective Compounds by Using Newly
    Developed Multi-Functional Composite Catalysts”, Conference on
    Industrial Waste Minimization and Sustainable Development’97,
    565-575 (1997).

    [38] K. Iwata, Y. M. Sun, S. Suda,” A recovery of Carbon Oxides by
    Methanation Reaction Through a Pressure-Temperature Swing Proc-
    Ess by Applying Active Protium in the Fluorinated Metal Hydride”,
    Inter. J. Hydrogen Energy, 24, 251-256 (1999).

    [39] Chun-Lei Zhang, Shuang Li, Tong-Hao Wu and Shao-Yi Peng,
    “Reduction of Carbon Dioxide into Carbon by the Active Wustite
    and the Mechanism of the Reaction”, Mater. Chem. and Phys., 58,
    129-145 (1999).

    [40] 林碧洲, “石油化學品之應用”, 中國石油學會, 85-86 (1982).

    [41] 張立德, 牟季美, “奈米材料和奈米結構”, 滄海書局, (2002).

    [42] 劉仲明, 郭東瀛, ”奈米材料”, 經濟部工業局, (2002).

    [43] 吳國卿, 董玉蘭, “奈米粒子材料的觸媒性質”, 化工資訊, 13, 42
    - 46 (1999).

    [44] G. W. Morey, Hydrothermal Synthesis, J. Am. Ceram. Soc., 36, 279
    (1953).

    [45] L. M. Demetsyanets, A. N. Lopachev, Some Problems of Consaltants
    Bureau, London Press, 1 (1973).

    [46] D. J. Watson, C. A. Randall, R. E. Newnham, J. H. Adairm,
    “Hydrothermal Formation Diagram in the Lead Titanate System”, in
    Ceramic Powder Sci.Ⅱ, Am. Ceram. Soc. Inc., 154 (1988).

    [47] T. Sugimoto, “Preparation of Mono-Dispered Colloidal Particles”,
    Advances in Colliod and Interface Sci., 28 (1987).

    [48] A. Matthews, “The Crystallization of Anatase and Rutile from
    Amorphous Titanium Dioxide under Hydrothermal Conditions”, Am. Mineralogist, 61, 410 (1976).

    [49] M. Guidi, L. Marini, G. Scandiffio, R. Cioni, ”Chemical
    Geoghermometry in Hydrothermal Aqueous Solutions”,
    Geothermics , Vol. 19, 415 (1990).

    [50] W. J. Dawson, “Hydrothermal Synthesis of Advanced Ceremics
    Powders”, Ceram. Bull., 67, No. 10, 1673 (1988).

    [51] R. R. Basca and J. P. Dougherty, “Hydrothermal Synthesis of Barium
    Titanate Thin Film on Titanium Metal Powder” J. Mater. Sci. Lett.,
    14, 600 (1995).

    [52] Y. C. Zhou and M. N. Rahaman, “Hydrothermal Synthesis and
    Sintering of Ultrafine BaTiO3 Powders”, J. Mater Res., Vol. 8, 1784
    (1993).

    [53] Wu Mingmei, Xu Ruren, Shou Hua Feng., “The Influence of
    Anions on the Products of BaTiO3 Under Hydrothermal Conditions”, J. Mater. Sci., 31, 6201 (1996).

    [54] S. Wada, T. Suzuki, T. Noma, “Preparation of Barium Titanate
    Fine Particles by Hydrothermal Method and Their Characterization”
    J. Ceram. Soc. Jpn., 103, 1220 (1995).

    [55] A. Chittofratt and E.Matijevic, “Uniform Particlefs o Zinc-Oxide of Different Morphologies”, Colloids and Surf., 48, 65, (1990).
    [56] 史宗淮, 水熱法合成鋇鐵氧磁粉之研究, 國立清華大學化工研究所博士論文, (1991).

    [57] J. Trindade, D. Pedrosa de Jesus, P. Óbrien, “The Preparation of Zinc Oxide and Zinc Sulfide Powders by Controlled. Precipitation From Aqueous Solutions”, J. Mater. Chem., 10, 1611 (1994).

    [58] C. H. Lu., W. J. Hwang, “Preparation of Pb(Zr,Ti)O3-Pb(Ni1/3Nb2/3)O3 Powder from Hydrothermally-Treated Precursors”, Mater. Lett., 27, 229 (1996).

    [59] S. T. Chung, K. Nagata, H. Igarashi, “ Thermal Hysteresis of Pyrpelectric signal of LATGS crystals”, Ferroelectrics, 94, 43(1989).

    [60] 汪健民等, “陶瓷技術手冊”, 經濟部技術部、中華民國粉末冶金學會、中華民國產業發展協進會出版 (1994).

    [61] J. R. Smith, J. A. Appelbaum et al., “Theory of Chemisorption”, 19 (1980).

    [62] 張有義, 郭蘭生, “膠體及介面化學入門”, 高立圖書有限公司,
    125-164 (1997).

    [63] 廖聖茹, 黃依蘋, 林仁章, 黃瑞呈, 工業材料雜誌, 190, 115-123
    (2002).

    [64] 高文弘, 陳振夏, 非均勻系觸媒化學的原理及應用, 國興出版社, 6-10 (1984).

    [65] 胡興中, 觸媒原理與應用, 高立圖書有限公司, 59-70, (1990)

    [66] T Kodoma, Y. Wada, T. Yamamoto, M. Tsuji, Y. Tamaura, “CO2 Decomposition to Carbon by Ultrafine Ni(II)-Bearing Ferrite at 300℃”, Mater. Res. Bull., 30, 1039-1048 (1995).

    [67] T. Kodoma, M. Tabata, K. Tominaga, T. Yoshida, Y. Tamaura, “Decomposition of CO2 and CO into carbon with active wustite prepared from Zn(II)-bearing ferrite”, J. Mater. Sci., 28, 547-552 (1993).

    [68] M. Tabata, Y. Nishida, T. Kodama, K. Mimori, T. Yoshida, Y. Tamaura, “CO2 decomposition with oxygen-deficient Mn(II) ferrite”, J. Mater. Sci. 28, 971-974 (1993).

    [69] K. Akanuma, K. Nishizawa, T. Kodama, M. Tabata, K. Mimori,Y. Tamaura, “Carbon dioxide decomposition into carbon with the rhodium-bearing magnetite activated by H2-reduction”, J. Mater. Sci., 28,860-864 (1993).
    [70] Chun-Lei Zhang, Shuang Li, Tong-Hao Wu, Shao-Yi Peng, “Reduction of carbon dioxide into carbon by the active wustite and the mechanism of the reaction”, Mater. Chem. Phy., 58, 139-145, (1999).

    [71] K. Akanuma, M. Tabata, N. Hasegawa, M. Tsuji, Y. Tamaura, Y. Nakahara, S. Hoshino, “Characterization of Carbon deposited from Carbon Dioxide on Oxygen-deficient Magnetites”, J. Mater. Chem., 3(9), 943-946, (1993).

    下載圖示 校內:立即公開
    校外:2004-08-03公開
    QR CODE