| 研究生: |
潘俊宏 Pan, Jun-Hong |
|---|---|
| 論文名稱: |
錳鋅鐵氧磁體應用於二氧化碳甲烷化之研究 The Study of (Mn,Zn)-ferrite applied for CO2 methanation |
| 指導教授: |
黃啟祥
Huang, Qi-Xiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 甲烷化 、鐵氧磁體 |
| 外文關鍵詞: | ferrite, methanation |
| 相關次數: | 點閱:57 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
CO2造成的溫室效應使得全球溫度不斷升高,全球各地的氣候異常,因此如何有效降低大氣中CO2的含量便成為重要的課題。
本研究旨在以水熱法製備高表比面積之( MnxZn1-x)Fe2O4觸媒粉末。檢討H2還原濃度對該觸媒粉末活化之影響,以及觸媒粉末組成、活化時間、反應溫度對CO2分解和甲烷化之影響。實驗是以硝酸鐵、硝酸錳和硝酸鋅鹽為起始原料,氨水為沈澱劑,利用水熱法來製備奈米級之錳鋅鐵氧磁體觸媒粉末,並藉由XRD、BET及GC等儀器之分析與觀察,瞭解合成粉體的各種特性。
150℃ 2 h之水熱條件下所合成之( MnxZn1-x)Fe2O4觸媒粉末,其比表面積為81.5 ~ 124.0 m2/g,孔隙大小則為6.36 ~ 14.1 nm。此粉末經H2還原後,約於220℃開始與H2反應,產生氧空缺之結構;當還原時間超過2 h,則會有wustite結構之產生。
在CO2分解反應方面,( MnxZn1-x)Fe2O4觸媒之填充量為2 g、還原氣體H2濃度為50 vol % 和反應氣體CO2 流速為5 sccm時,( Mn0.33Zn0.66)Fe2O4觸媒有較佳之CO2反應氣體轉化量。在CO2甲烷化反應方面,( MnxZn1-x)Fe2O4於反應溫度300℃,與H2/CO2反應後,產物氣體無法檢測出CH4,於350℃以上產物氣體才有CH4,但CH4產率仍不高。
The greenhouse effect as a result of CO2 causes the raise of earth temperature and unusual weather phenomenon. Nowadays it is an important topic to find the way of CO2 reduction.
Ferrite powders of high specific surface area were synthesized by the hydrothermal treatment. The effect of H2 concentration on the catalyst activation were investigated. The composition of the catalysts, the time of activation and the reaction temperature for CO2 decomposition and methanation were studied, too. Ferrite powders were synthesized under hydrothermal conditions ( 150℃ for 2 h) by precipitating from metal nitrates with aqueous ammonia. Synthesized powders were characterized by XRD, TEM, GC, etc. The results show that:
Mn-Zn ferrite catalysts with high specific area ( 81.5 ~ 124.0 m2/g) and nano pore size (6.36 ~ 14.1 nm) were synthesized by hydrothermal treatment. ( MnxZn1-x )Fe2O4-δ were obtained by flowing H2 through ( MnxZn1-x)Fe2O4 above 220℃; Wustite structure were formed by flowing H2 through ( MnxZn1-x)Fe2O4 after 2 h.
( Mn0.33Zn0.66)Fe2O4 Catalysts showed the best CO2 decomposition performance after 50 % H2 reduction at 300℃ for 3h. CH4 was produced only ( Mn0.33Zn0.66)Fe2O4 when reacted with H2/CO2 above 350℃; but the CH4 yield was still low.
[1] 陳維新, 江金龍, “空氣污染與防制”, 高立圖書有限公司 (2001).
[2] H. Sakurai, M. Haruta, “Carbon Dioxide and Carbon Mnoxide Hydrogenation over
Gold Supported on Titanium, Iron and Zinc Oxides”, Applied Catalysis, 127, 93-105 (1995).
[3] H. Ando, M. Fujiwara, Y. Matsumura, H. Miyamura and Y. Souma,
“ Methanation of Carbon Dioxide over LaNi4X type Catalysts”,
Energy Convers. Mgmt, 36, 653-656 (1995).
[4] Y. Souma, H. Ando, M. Fujiwara and R. Kieffer, “Catalytic
Hydrogenation of Carbon Dioxide to Hydrocarbons”, Energy
Convers. Mgmt, 36, 593-596 (1995).
[5] H. Ando, M. Fujiwara, Y. Matsumura, H. Miyamura, H. Tanaka and
Y. Souma, “Methanation of Carbon Dioxide over LaNi4X type
Intermetallic compounds as catalyst precursor”, J. Alloys and
Compounds, 223, 139-141 (1995).
[6] M. Yamasaki, M. Komori, E. Akiyama, H. Habazaki, A. Kawashima,
K. Asami and K. Hashimoto, “CO2 Methanation Catalysts Prepared
from Amorphous Ni-Zr-Sm and Ni-Zr-misch Metal Alloy
Pecursors”, Mater. Sci. and Engin., 267, 220-226 (1999).
[7] S. Mori, W. C. Xu, T. Ishidzuki, N. Ogasawara, J. Imai, K. Kobayashi, “
Mechanochemical activation of catalysts for CO2 methanation”, Applied
Catalysis A: General 137, 255-268 (1996).
[8] M.Marwood, R. Doepper, A. Renken, “In-situ surface and gas phase
analysis for kinetic studies under transient conditions “ Applied catalysis
A: General 151, 223-246 (1997).
[9] A. E. Aksoylu, D L. Trimm, “ Structure / activity relationships in
coprecipitated nickel-alumina catalysts using CO2 adsorption and
methanation”, Applied Catalysis A: General 145, 185-193 (1996).
[10] M. Yamasaki, H. Habazaki, T. Yoshida, E. Akiyama, A. Kawashima,
“ Compositional dependence of the CO2 methanation activity of
Ni/ZrO2 catalysts prepared from amorphous Ni-Zr alloy precursors”
Applied Catalysis A: General 163, 187-197 (1997).
[11] M Le Bras, M Agounaou, L Gengembre, H Baussart, JM Leroy,
“ Influence of a reduction process on the catalytic performances of
BixGd1-xVO4 catalysts for the hydrogenation of carbon dioxide”, J.
Chim. Phys., 93, 331-354 (1996).
[12] 袁中新, 洪崇軒,”溫室氣體二氧化碳之常溫光催化還原技術研
究”, 行政院環境保護署 (2002).
[13] G.R. Dey, A.D. Belapukar, K. Kishore, “ Photo-catalytic reduction of
carbon dioxide to methane using TiO2 suspension in water”, J.
Photochemistry and Photobiology A: Chemistry 163, 503-508
(2004).
[14] M. Tsuji, H. Kato, T. Kodama, Shin Ger Chang, N. Hesegawa and
Y. Tamaura,” Methanation of CO2 on H2-Reduced Ni(II)- or Co(II)-
Bearing Ferrites at 300℃”, J. Mater. Sci., 29, 6227-6230 (1994).
[15] T. Kodama, Y. Kitayama, M. Tsuji and Y. Tamaura,” Methanation of
CO2 Using Ultrafine NiFe3-xO4”, Energy, 22(2/3), 183-187 (1997).
[16] H. Kato, T. Sano, Y. Wada, Y. Tamaura, M. Tsuji,” Methanation of
CO2 with the Oxygen-Deficient Ni(II)- Ferrite under Dynamic
Conditions”, J. Mater. Sci., 30, 6350-6354 (1995).
[17] M. Tsuji, T. Kodama, T. Yoshida, Y. Kitayama and Y. Tamaura,
“ Preparation of CO2 Methanation Activity of an Ultrafine Ni(II)
Ferrite Catalyst”, J. Cata., 164, 315-321 (1996).
[18] M. Tsuji, K. Nishizawa, T. Yoshida and Y. Tamaura,” Methanation
reactivity of Carbon Deposited Directly from CO2 on to the Oxygen
Deficient Magnetite”, J. Mater. Sci., 29, 5481-5484 (1994).
[19] K. Nishizawa, H. Kato, K. Mimori, T. Yoshida, N. Hasegawa,
M. Tsuji and Y. Tamaura,” Methanation of Carbon Deposited
Directly from CO2 on Rhodium-bearing Activated Magnetite”,
J. Mater. Sci., 29, 768-772 (1994).
[20] T. Yoshida, K. Nishizawa, M. Tabata, H. Abe, T. Kodama,
M. Masamichi and Y. Tamaura, “ Methanation of CO2 with H2-
reduced Magnetite”, J. Mater. Sci., 28, 1220-1226 (1993).
[21] M.Tabata, Y. Tamaura, “Complete Reduction of Carbon-Dioxide to
Carbon Using Cation-Excess Magnetite”, Nature, 346, 19, 255-256
(1990).
[22] Chun-lei Zhang, Shuang Li, Li-jun Wang, Tong-hao Wu and Shao-yi
Peng,”Studies on the Decomposition of Carbon Dioxide into Carbon
with Oxygen-Deficient Magnetite”, Mater. Chem. and Phys., 62, 44-
51 (2000).
[23] T. Kodama, H. Kato, N. Hasegawa, M. Tsuji and Y. Tamaura,
“Decomposition of CO2 to Carbon by H2- reduced Ni(II)- and
Co(II)- bearing ferrites at 300℃”, J. Mater. Res., 9(2), 462-467
(1994).
[24] M. Tabata, H. Kato, T. Kodama, T. Yoshida, M. Tsuji and
Y. Tamaura,”CO2 Decomposition with Mangano-Wustite”, J. Mater. Sci., 29, 999-1003 (1994).
[25] Jung-Sik Kim, Jung-Ryul Ahn, Chang Woo Lee, Y. Murakami and
D. Shindo,” Morphological Properties of Ultra-Fine (Ni-Zn)-Ferrites
and Their Ability to Decompose CO2”, J. Mater. Chem., 11, 3373-
3376 (2001).
[26] M. Tabata, Y. Nishida, T. Kodama, K. Mimori, T. Yoshida, Y.
Tamaura, “ CO2 Decomposition with Oxygen-Deficient Mn(II)
Ferrite”, J. Mater. Sci., 28, 971-974 (1993).
[27] H. Kato, T. Kodama, M. Tsuji, Y. Tamaura, “ Decomposition of
carbon dioxide to carbon by hydrogen-reduced Ni (ii)- bearing
ferrite”, J. Mater. Sci., 29, 5689-5692 (1994).
[28] P.E. Matijevic, “Colloid Science of Composite Systems”, in Science
of Ceramic Chemical Pcocessing, Edited by L.L. Hench and D.R.
Ulrich. Wiley, New York, 463-481 (1986).
[29] Horry Robbins, “The Preparation of Mn-Zn Ferrite by Co-
precipitation”, Proceeding ICF4, Japan, 7-10 (1980).
[30] K. Oda, T. Yoshio, K. Hirata, K. O-Oda and K. Takahashi,
“Preparation of Barium Ferrites from Metal Alkoxide”, J. Jpn. Soc.
Powder Metal, 29(5), 170-175 (1982).
[31] M. Kumazawa, H. M. Cho, E. Sada, “Hydrothermal Synthesis of
barium ferrite fine particles from goethite”, Champman &Hall,
5247-5250 (1993).
[32] A. Clearfield, A. M. Gadalla, W. H. Marlow and T. W. Livingston,
“Synthesis of Ultrafine Grain Ferrites”, J. Am. Ceram. Soc., 72(10),
1798-1792 (1989).
[33] 林文豪, 錳鋅鐵氧磁體粉末之製備、燒結性及其燒結體之研究,
國立成功大學材料科學及工程研究所博士論文 (2000).
[34] 要之勤, 水熱法合成(MnxZn1-x)Fe2O4鐵氧磁體粉末之特性研
究,國立成功大學材料科學及工程研究所學士論文(2002).
[35] 王能誠,二氧化碳還原用鐵氧磁體觸媒之製備及其特性研究, 國立成功大學材料科學及工程研究所碩士論文 (2001).
[36] M. Ozaki, K. Takeuchi, Y. Fujioka, K. Sonoda, Y. Suetake,” Studies
on Dispersion of Refrigerant Composition for Multi-Air Condition-
ers with Non-Azeotropic Refrigerant Mixture”, Technical Review,35
(2), 34-40 (1998).
[37] I. Tomoyuki, “Highly Effective Compounds by Using Newly
Developed Multi-Functional Composite Catalysts”, Conference on
Industrial Waste Minimization and Sustainable Development’97,
565-575 (1997).
[38] K. Iwata, Y. M. Sun, S. Suda,” A recovery of Carbon Oxides by
Methanation Reaction Through a Pressure-Temperature Swing Proc-
Ess by Applying Active Protium in the Fluorinated Metal Hydride”,
Inter. J. Hydrogen Energy, 24, 251-256 (1999).
[39] Chun-Lei Zhang, Shuang Li, Tong-Hao Wu and Shao-Yi Peng,
“Reduction of Carbon Dioxide into Carbon by the Active Wustite
and the Mechanism of the Reaction”, Mater. Chem. and Phys., 58,
129-145 (1999).
[40] 林碧洲, “石油化學品之應用”, 中國石油學會, 85-86 (1982).
[41] 張立德, 牟季美, “奈米材料和奈米結構”, 滄海書局, (2002).
[42] 劉仲明, 郭東瀛, ”奈米材料”, 經濟部工業局, (2002).
[43] 吳國卿, 董玉蘭, “奈米粒子材料的觸媒性質”, 化工資訊, 13, 42
- 46 (1999).
[44] G. W. Morey, Hydrothermal Synthesis, J. Am. Ceram. Soc., 36, 279
(1953).
[45] L. M. Demetsyanets, A. N. Lopachev, Some Problems of Consaltants
Bureau, London Press, 1 (1973).
[46] D. J. Watson, C. A. Randall, R. E. Newnham, J. H. Adairm,
“Hydrothermal Formation Diagram in the Lead Titanate System”, in
Ceramic Powder Sci.Ⅱ, Am. Ceram. Soc. Inc., 154 (1988).
[47] T. Sugimoto, “Preparation of Mono-Dispered Colloidal Particles”,
Advances in Colliod and Interface Sci., 28 (1987).
[48] A. Matthews, “The Crystallization of Anatase and Rutile from
Amorphous Titanium Dioxide under Hydrothermal Conditions”, Am. Mineralogist, 61, 410 (1976).
[49] M. Guidi, L. Marini, G. Scandiffio, R. Cioni, ”Chemical
Geoghermometry in Hydrothermal Aqueous Solutions”,
Geothermics , Vol. 19, 415 (1990).
[50] W. J. Dawson, “Hydrothermal Synthesis of Advanced Ceremics
Powders”, Ceram. Bull., 67, No. 10, 1673 (1988).
[51] R. R. Basca and J. P. Dougherty, “Hydrothermal Synthesis of Barium
Titanate Thin Film on Titanium Metal Powder” J. Mater. Sci. Lett.,
14, 600 (1995).
[52] Y. C. Zhou and M. N. Rahaman, “Hydrothermal Synthesis and
Sintering of Ultrafine BaTiO3 Powders”, J. Mater Res., Vol. 8, 1784
(1993).
[53] Wu Mingmei, Xu Ruren, Shou Hua Feng., “The Influence of
Anions on the Products of BaTiO3 Under Hydrothermal Conditions”, J. Mater. Sci., 31, 6201 (1996).
[54] S. Wada, T. Suzuki, T. Noma, “Preparation of Barium Titanate
Fine Particles by Hydrothermal Method and Their Characterization”
J. Ceram. Soc. Jpn., 103, 1220 (1995).
[55] A. Chittofratt and E.Matijevic, “Uniform Particlefs o Zinc-Oxide of Different Morphologies”, Colloids and Surf., 48, 65, (1990).
[56] 史宗淮, 水熱法合成鋇鐵氧磁粉之研究, 國立清華大學化工研究所博士論文, (1991).
[57] J. Trindade, D. Pedrosa de Jesus, P. Óbrien, “The Preparation of Zinc Oxide and Zinc Sulfide Powders by Controlled. Precipitation From Aqueous Solutions”, J. Mater. Chem., 10, 1611 (1994).
[58] C. H. Lu., W. J. Hwang, “Preparation of Pb(Zr,Ti)O3-Pb(Ni1/3Nb2/3)O3 Powder from Hydrothermally-Treated Precursors”, Mater. Lett., 27, 229 (1996).
[59] S. T. Chung, K. Nagata, H. Igarashi, “ Thermal Hysteresis of Pyrpelectric signal of LATGS crystals”, Ferroelectrics, 94, 43(1989).
[60] 汪健民等, “陶瓷技術手冊”, 經濟部技術部、中華民國粉末冶金學會、中華民國產業發展協進會出版 (1994).
[61] J. R. Smith, J. A. Appelbaum et al., “Theory of Chemisorption”, 19 (1980).
[62] 張有義, 郭蘭生, “膠體及介面化學入門”, 高立圖書有限公司,
125-164 (1997).
[63] 廖聖茹, 黃依蘋, 林仁章, 黃瑞呈, 工業材料雜誌, 190, 115-123
(2002).
[64] 高文弘, 陳振夏, 非均勻系觸媒化學的原理及應用, 國興出版社, 6-10 (1984).
[65] 胡興中, 觸媒原理與應用, 高立圖書有限公司, 59-70, (1990)
[66] T Kodoma, Y. Wada, T. Yamamoto, M. Tsuji, Y. Tamaura, “CO2 Decomposition to Carbon by Ultrafine Ni(II)-Bearing Ferrite at 300℃”, Mater. Res. Bull., 30, 1039-1048 (1995).
[67] T. Kodoma, M. Tabata, K. Tominaga, T. Yoshida, Y. Tamaura, “Decomposition of CO2 and CO into carbon with active wustite prepared from Zn(II)-bearing ferrite”, J. Mater. Sci., 28, 547-552 (1993).
[68] M. Tabata, Y. Nishida, T. Kodama, K. Mimori, T. Yoshida, Y. Tamaura, “CO2 decomposition with oxygen-deficient Mn(II) ferrite”, J. Mater. Sci. 28, 971-974 (1993).
[69] K. Akanuma, K. Nishizawa, T. Kodama, M. Tabata, K. Mimori,Y. Tamaura, “Carbon dioxide decomposition into carbon with the rhodium-bearing magnetite activated by H2-reduction”, J. Mater. Sci., 28,860-864 (1993).
[70] Chun-Lei Zhang, Shuang Li, Tong-Hao Wu, Shao-Yi Peng, “Reduction of carbon dioxide into carbon by the active wustite and the mechanism of the reaction”, Mater. Chem. Phy., 58, 139-145, (1999).
[71] K. Akanuma, M. Tabata, N. Hasegawa, M. Tsuji, Y. Tamaura, Y. Nakahara, S. Hoshino, “Characterization of Carbon deposited from Carbon Dioxide on Oxygen-deficient Magnetites”, J. Mater. Chem., 3(9), 943-946, (1993).