簡易檢索 / 詳目顯示

研究生: 王浩丞
Wang, Hao-Cheng
論文名稱: 以結構與傳輸現象探討 Polyethyleneglycol 對RTIL BMIBF4 and BMIPF6 聚集的影響
Structure and Transport Property Investigation of the Effect of Polyethyleneglycol on Aggregation of RTIL BMIBF4 and BMIPF6
指導教授: 蘇世剛
Su, Shyh-Gang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 138
中文關鍵詞: 離子液體黏度導電度擴散係數
外文關鍵詞: ionic liquid, RTIL, BMIBF4, BMIPF6
相關次數: 點閱:115下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以核磁共振的方法, 測量 1-butyl-3-methylimidazole
    tetrafluoroborate (BMIBF4) 、1-butyl-3-methylimidazolium tetrafluoroborate
    (BMIPF6) ,分別加入溶劑 polyethyleneglycol ( PEG ),
    分子量200、300、400 與 polyehtyleneimine( PEI ),分子量423 後,
    溶劑含量 ( 莫爾分率x=0.05、0.1、0.2、0.3、0.4、0.5 ) 及溫度的改
    變 ( 300 - 338 K ) 對於擴散係數、化學位移及二維光譜之影響。本實
    驗同時也測量混合液之黏度、密度與導電度,以進一步研究離子液體
    的分子動態行為及結構影響。
    結果顯示,溶劑 PEG 會利用其孤立電子對與陽離子 BMI+ 環上
    之H 原子產生氫鍵,其1H 化學位移的變化與陰、陽離子間的相對距
    離有關。由HOESY 光譜上也發現溶劑 PEG 會利用其環上的烷基氫
    與 BF4
    - PF6
    - 之F 原子產生氫鍵。當溶劑 PEG 含量增加時,離子液
    體BMIPF6、BMIBF4 的陰陽離子擴散速率增加,溶液黏度及導電度
    均隨之下降。
    經由擴散半徑變大、結合程度變大、Tansport number 減小,驗證
    溶劑PEG 加入到離子液體 BMIBF4 BMIPF6 後,會與陽離子 BMI+
    有氫鍵作用,而將陽離子包覆起來,但是溶劑 PEG 並沒有將陰陽離
    子對拆開,只是將陰陽離子之間的距離拉開,形成所謂的離子團簇物
    II
    (cluster)。而且當溶劑 PEG 分子量越高和濃度越高,包覆情形就更
    明顯,就會形成更大的 cluster , 而在 BMIBF4/PEG 系統比在
    BMIPF6/PEG 系統越容易形成cluster ,且溶液中有更小的分子群
    聚。但不管加入哪一種 PEG 至何種離子液體,皆可以讓純的離子液
    體中大分子群聚變成較小的分子群聚。溶劑 PEI 本身結構較剛性與
    BMIPF6 作用力較不好,所以不容易與BMIPF6 產生離子團簇。

    1-butyl-3-methylimidazole tetrafluoroborate (BMIBF4) and 1-butyl-
    3-methylimidazole tetra-fluoroborate(BMIPF6) was respectively mixed
    firstly with various diluents such as polyethyleneglycol(PEG MW=
    200、300、400 ) and polyehtyleneimine (PEI MW=423)
    Nuclear Magnetic resonance techniques were then applied to
    investigate the influences of solvent content(x=0.05、0.1、0.2、0.3、0.4、
    0.5)and temperature variations (303-338 K) on the chemical shift,
    diffusion coefficient. The physical properties, like viscosity, density and
    conductivity of the mixture were also measured to understand further the
    dynamics and structure of mixed solutions.
    The results showed that intermolecular hydrogen-bonding forms
    between the O lone-pair electrons of solvent PEG and the H’s in BMI+
    ring. The 1H chemical shift difference is closely related to the distance
    between BMI+ and BF4
    - or PF6
    - ions. It’s also found from the HOESY
    spectra that hydrogen bond is also formed between the alkyl hydrogen of
    the solvent and the 19F atom of BF4
    - and PF6
    -. As solvent content
    increases, the viscosity and conductivity of solution falls, the movement
    of the anions increase and that of the cations decrease thereupon from the
    diffudion coefficient measurements.
    We found that the Hydrodynamic radius and the Aggregation
    became larger and the Transport number of BMI+ became smaller, which
    indicate that when the PEG mix with the BMIBF4 、BMIPF6, the PEG
    utilizes its lone electron pairs to form hydrogen bond with the H atom of
    IV
    BMI+ ring and cove BMI+. However, the added PEG just makes the
    average distance between BMI+ and F- larger and produces cluster
    without dissociating BMI+ and its counter anion by simultaneously
    H-bonds with BMI+ and its counter anion. When the molecular weight
    and the consistency of PEG are getting larger, the obvious effect of
    coving will generate larger clusters involving PEG, BMI+ and its counter
    anion. Besides, the BMIBF4/PEG system has an even smaller group of
    BF4
    - in comparison with PF6
    - and is easier to generate clusters than the
    BMIPF6/PEG system. No matter which PEG solvent could induce the
    shift in aggregation from big cluster for pure ionic liquid to smaller
    cluster without dissociation of ion pairs. In addition, since the structure of
    PEI is rigid, it does not have a good interaction with BMIPF6, and is
    difficult to generate clusters with BMIPF6 via coving.

    摘要............................................................................................................. I Abstract.................................................................................................... II 致謝............................................................................................................V 目 錄.....................................................................................................VII 圖目錄........................................................................................................X 表目錄................................................................................................... XVI 第一章 緒論...............................................................................................1 第二章 理論背景......................................................................................9 2-1 核磁共振( Nuclear Magnetic Resonance, NMR ) ....................9 2-2 核磁共振的歷史背景...............................................................9 2-3 吸收的機制..............................................................................12 2-4 遮蔽效應與化學位移.............................................................12 2-5 核磁共振的弛緩機制.............................................................13 2-6 擴散係數..................................................................................16 2-7 密度( Density ) ........................................................................18 2-8 黏度( Viscosity )......................................................................18 2-9 導電度( Conductivity ).............................................................19 第三章 實驗方法....................................................................................20 3-1 離子液體的合成......................................................................20 VIII (A) 1-butyl-3-methylimidazolium chloride ( BMIC )的製備20 (B) 1-butyl-3-methylimidazolium tetrafluoroborate ( BMIBF4 ) 22 1-butyl-3-methylimidazolium tetrafluoroborate( BMIPF6 )的製 備 22 3-2 樣品配製..................................................................................23 (A)配置量測擴散係數的樣品...................................................23 (B) 配置量測黏度密度與導電度的樣品..............................23 3-3 實驗裝置及儀器......................................................................24 3-4 實驗原理及方法......................................................................24 (A) 擴散係數的測量.................................................................24 (B) 密度、黏度、導電度的測量.............................................27 第四章 結果與討論................................................................................31 4-1 擴散係數..................................................................................31 4-2 密度與黏度..............................................................................37 (A) 密度.....................................................................................37 (B) 黏度.....................................................................................42 4-3 導電度......................................................................................65 (A)利用Nernst-Einstein equation 算出解率程度與結合程度80 (B)BMIPF6/PEG BMIPF6/PEI 系統........................................82 IX (C) BMIBF4/PEG 系統..............................................................86 4-4 化學位移與二維光譜.............................................................89 (A) H 的化學位移..................................................................90 (B)F 的化學位移...................................................................- 97 - (B) NOESY 光譜.............................................................- 105 - (C) HOESY 光譜............................................................. - 110 - 第五章 結 論....................................................................................133 參考文獻.................................................................................................138

    1. Walden P., Bull. Acad. Imper. Sci.(St. Petersburg), 1914, 1800.
    2. Hurley F. H.; Wier T. P., J. Electrochem. Soc., 1951, 98, 203.
    3. Carpio R. A.; King L. A.; Lindstrom R. E.; Nardi J. C.; Hussy C. L.,
    J. Electrochem. Soc., 1979, 126, 1644.
    4. Wilkes J. S.; Levisky J. A.; Wilson R. A.; Hussey C. L., Inorg. Chem.,
    1982, 21, 1263.
    5. Wilkes J. S.; Zaworotko M. J., J. Chem.Soc. Chem. Commun., 1992,
    965.
    6. Fuller J.; Carlin R. T., Osteryoung, R. A., J. Electrochem. Soc., 1997,
    144, 3881.
    7. Suarez P. A. Z.; Dullius J. E. L.; Einloft S.; Souza R. F. De; Dupont J.,
    Polyhedron, 1996, 15 1217.
    8. Bonhote P.; Dias A. P.; Papageorgiou N.; Kalyanasundaram K. S.;
    Gratzel M., Inorg. Chem., 1996, 35, 1168.
    9. Headley A. D.; Jackson N. M., J. Phys. Org. Chem., 2002, 15, 52.
    10. Nishida T.; Tashiro Y.; Yamamoto M.; J. Fluorine Chem, 2003, 120,
    135.
    11. Su B. M.; Zhang S.; Zhang Z. C., J. Phys. Chem. B, 2004, 108,
    19510.
    12. Purcell E. M.; Torrey H. C.; Pound R. V., Phys. Rev. 1946, 69, 37
    13. Block F.; Hansen W.; Packard W., Phys. Rev. 1946, 69, 127
    139
    14. 甘魯生,電子月刊,1998, 36, 55.
    15. Arnold J. T.; Dharmatti S. S.; Packard M. E., J. Chem. Phys. 1951,
    19, 507.
    16. 黃紹光, 天下遠見, 1999.
    17. Yang D.; Konrat R.; Kay L. E.; J. Am. Chem. Soc. 1997, 119, 11938.
    18. Yang D.; Kay L. E., J. Am. Chem. Soc. 1999, 121, 2571.
    19. Klabunde K. J.; D. J. Burton, J. Am. Chem. Soc., 1972, 94, 5985.
    20. Cluster E. L., Diffusion-Mass Transfer in Fluid Systems, Cambridge
    Univeristy Press, Cambridge, 1984
    21. Umecky T., Fluid Phase Equilibria, 2005, 228-229
    22. Watanabe M., J. Chem. Phy. B, 2004, 108, 16593-16600

    下載圖示 校內:2011-07-07公開
    校外:2011-07-07公開
    QR CODE