簡易檢索 / 詳目顯示

研究生: 陳聖涵
Chen, Shen-Han
論文名稱: 結晶化對SiO2-Li2O-K2O-P2O5玻璃之機械與光學性質之影響
Effect of Crystallization on Mechanical and Optical Properties of SiO2-Li2O-K2O-P2O5 Glass
指導教授: 葉明龍
Yeh, Ming-Long
共同指導教授: 郭榮富
Kuo, Rong-Fu
方冠榮
Fung, Kuan-Zong
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 63
中文關鍵詞: 二矽酸鋰玻璃陶瓷熱處理結晶化機械性質透明度透光度
外文關鍵詞: Lithium disilicate, Glass-ceramic, Heat treatment, Crystallization, Mechanical properties, Translucency
相關次數: 點閱:164下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

牙體修復材料的演變已由全金屬材料、陶瓷融和金屬材料、至全陶瓷及玻璃陶瓷材料。現今以陶瓷材料系統最被廣泛使用在醫美牙體修復上,其因陶瓷顏色較接近自然牙顏色。由於二矽酸鋰陶瓷陶瓷材料有足夠的強度以及優異的著色表現使其在牙體修復之美學領域更優於氧化鋯及氧化鋁陶瓷材料。二矽酸鋰玻璃陶瓷之化學組成、結晶化熱處理溫度與著色成份的改變皆會影響其機械強度及其視覺上之美感。
本研究以SiO2-Li2O-K2O-P2O5系統作為二矽酸鋰玻璃陶瓷材料之主要組成,並藉由不同之結晶化熱處理程序探討SiO2-Li2O-K2O-P2O5玻璃陶瓷之機械強度與色澤性質之影響。此材料中SiO2:Li2O之莫爾比為2.39:1之共晶點組成。Li2Si2O5結晶頃向朝(010)之優選方向成長而形成針狀晶粒 此針狀晶粒間則因互相交錯形成連鎖(interlocking)效應而使此材料具有良好的強度與韌性表現。玻璃陶瓷是個既高透度又較容易著色的材料,藉由添加Ce2O3 (黃色)、Er2O3 (粉紅色)及 V2O5(籃色)成份使玻璃陶瓷材料得著上獨立顏色及高透光、透明度表現。
在熱處理製程中 Li2O將首先與SiO2以莫爾比1比1之比例反應形成偏矽酸鋰(Li2SiO3)結晶相。而P2O5則於600℃一段式熱處理開始,因P5+離子有較高的field strength所以打斷原有的Si-Li鍵而形成磷酸鋰(Li3PO4) 所謂的成核因子。在650℃一段式熱處理,大部份的偏矽酸鋰成形而少部分的二矽酸鋰異質成核再磷酸鋰上。在兩段式熱處理於650℃成核熱處理後升溫至700℃時,過量的方晶石(Cristobalite)(SiO2)結晶相形成但因熱能驅動力不足導致偏矽酸鋰未能和方晶石反應形成二矽酸鋰(Li2Si2O5)結晶相。直到兩段式熱處理從650℃成核熱處理後升溫至740℃結晶化熱處理開始,Li2SiO3與過量之SiO2快速反應轉化而形成二矽酸鋰Li2Si2O5。再兩段式熱處理於650℃成核熱處理後升溫至800℃結晶化熱處理,玻璃相才幾乎以完全轉為二矽酸鋰相。
二矽酸鋰由熔融、淬火與兩段式熱處理於650℃成核熱處理後再於740℃結晶化熱處理,試片之雙軸彎曲強度(Biaxial flexural strength)達392MPa,維氏硬度(Vickers’ hardness)則為586HV,韌性則為2.27 K_IC (MPa∙√m)
對添加著色劑的玻璃陶瓷在強度上只有添加1體積比的Er2O3才有明顯的強度降低變化。透光度量測顯示1mm及0.5mm厚度的玻璃陶瓷有明顯的透光度差異。而添加Ce2O3及Er2O3之玻璃陶瓷在添加超過0.8體積比時才有明顯的透光度差異性。透明度量測顯示玻璃陶瓷添加0.4及0.6體積比的Ce2O3有效提其透明度 而添加0.4至1體積比的Er2O3及V2O5會因添加的量上升而降低其透明度。

The evolutions of dental restoration begin with metal, porcelain fused metal, to ceramic or glass-ceramic dental restorative. Nowadays, glass-ceramic system has been extensively used in esthetic dental restoration due to the advantage of natural tooth-like color of glass-ceramic appearance. Lithium disilicate as a glass-ceramic material is superior in esthetic region and sufficient strength than zirconia dioxide and aluminum dioxide based dental restoration. Therefore, with the changes of compositions, heat treatment temperatures, and coloring agents may alter the mechanical properties and esthetic of lithium disilicate glass-ceramic system.
In this study, lithium disilicate glass-ceramic based on SiO2-Li2O-K2O-P2O5 system is used to investigate the relationship between the crystallization with the mechanical and optical properties of the glass-ceramic system. In the lithium disilicate glass-ceramic, the molar ratio of SiO2:Li2O is 2.39:1 which the eutectic composition of SiO2-Li2O-K2O-P2O5 system. The lithium disilicate phase and quartz phase tend to form a high strength lamellar eutectic structure. The (010) orientation is the preferred growth direction for Li2Si2O5 crystal that result in needle-like grains. The interlocking network formed by needle-like grains provides better toughness performance. Glass-ceramic has a high transmittance independent color by staining Ce2O3 (yellow), Er2O3 (pink), and V2O5 (blue) coloring agents.
During the heat treatment process, Li2O initially react with SiO2 with a molar ratio of 1:1 to form lithium metasilicate (Li2SiO3). As the heat treatment temperature increased to 600℃, P5+ ions from P2O5 break the Si-Li bonds due to P5+ ions has a higher field strength. As the heat treatment increase to 650℃, mainly lithium metasilicate has formed with small amount of lithium disilicate appear due to the heterogeneous nucleation. As the two-stage heat treatment of 650℃ followed by 700℃, excess of cristobalite formed, however, lithium disilicate does not occur due to insufficient in driving force. As the two-stage heat treatment of 650℃ followed by 740℃, lithium metasilicate reacted with excess silicon dioxide and precipitate to lithium disilicate. As the second-stage heat treatment increased to 800℃, most of the glass phase has completely transform into lithium disilicate.
With the process of melting, cooling, and two-stage heat treatment of 650℃ followed by 740℃, lithium disilicate has a biaxial flexural strength of 392MPa, Vickers’ hardness of 586HV, and fracture toughness of 2.27 K_IC (MPa∙√m)
Lithium disilicate stained coloring ions Ce2O3, Er2O3, and V2O5 show different level of color changes into yellow, pink and blue respectively. Their combination can be adjusted into further nature looking color. In most case of low concentration of coloring agent addition, the mechanical properties of lithium disilicate do not have significant changes. Lithium disilicate stained with coloring agents shows only Er2O3 with 1 volume percentage has a decrease in flexural strength. The Contrast Ratio shows a decrease in CR value as the specimens thickness increase from 0.5mm to 1mm. Glass-ceramic stained with more than 0.8 volume percentage of Ce2O3 and Er2O3 has a significant different in CR value from normal glass-ceramic. Adding of 0.4 and 0.6 volume percentage of Ce2O3 has an increase in translucency compare with glass-ceramic without staining color.
This study concludes the success of fabrication of lithium disilicate with matching mechanical properties with commercial product and color adjustability.

Table of Content 中文摘要 I Abstract III Acknowledgement V Table of Content VI List of Tables VIII List of Figures IX Chapter 1 Introduction 1 Chapter 2 Literature Review 12 2.1 Lithium Disilicate 12 2.2 Optical Analysis 13 Chapter 3 Objective 15 Chapter 4 Materials and Methods 16 4.1 The flow chart of this study 16 4.1.1 Powder Preparation 18 4.1.2 Glass formation 19 4.1.3Crystallization 20 4.2 Properties Analysis 23 4.2.1 Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) Analysis 23 4.2.2 High Temperature Differential Scanning Calorimetry (HT-DSC) 23 4.2.3 X-Ray Diffractometer (XRD) Analysis 23 4.2.4 Scanning Electron Microscope (SEM) Analysis 24 4.3 Mechanical Properties 24 4.3.1 Vickers Hardness 24 4.3.2 Fracture Toughness 25 4.3.3 Biaxial Flexural Strength 26 4.4 Optical Properties 28 4.4.1 Contrast Ratio (CR) 28 4.4.2 Translucency Parameter (TP) 28 4.5 Statistic Analysis 30 Chapter 5 Results and Discussion 31 5.1 Investigation of the Mechanisms of Nucleation and Crystallization of Glass-Ceramic Formation 31 5.1.1 Thermal Analysis of glass-ceramic 31 5.1.2 Crystallization Analysis of the Various Heat Treatment Process 33 5.1.3Effect of Heat treatment on Microstructure of Lithium Disilicate 38 5.2 The Mechanical Properties of Crystallized Lithium Disilicate 42 5.2.1 Mechanical strength of lithium disilicate with different heat treatment 42 5.2.2 Mechanical Strength of Lithium Disilicate Doped with Color Agents 48 5.3 Optical Properties 51 5.3.1 Contrast Ratio of Lithium Disilicate Glass-Ceramic Doped with Color Agents: Cerium Oxide, Erbium Oxide, and Vanadium Oxide 54 5.3.2 Translucency Parameter of Lithium Disilicate Doping with Coloring Agents: Cerium Oxide, Erbium Oxide, and Vanadium Oxide 56 Chapter 6 Conclusion 59 References 61 List of Tables Table1-1. The dental ceramic materials 1 Table 4-1. Powders information 18 Table 5-1. Fracture toughness diagram. Profile (III) is glass-ceramic heat- treated at 650℃for30min followed by 740℃for30min 46 List of Figures Figure 1-1. Lithium disilicate (Li2Si2O5) Layer Silicate 4 [Obtained from W. Höland and G.H. Beall (2012) under fair use, 2015] (Holand & Beall, 2012) 4 Figure 1-2. The structure of a crystalline ceramics and an amorphous glass 5 [Obtained from El-Meliegy and van Noort (2012) under fair use, 2015](El-Meliegy & van Noort, 2012) 5 Figure 1-3. SiO2-Li2O Binary phase diagram 6 [Obtained from Levin et al., (1964); West and Glasser, (1971); Hasdemir et al., (1998); Soares et al.,(2008) under fair use, 2015](Hasdemir, Bruckner, & Deubener, 1998; Levin, Robbins, & McMurdie, 1975; Soares, Zanotto, Fokin, & Jain, 2003; West & Glasser, 1971) 6 Figure 1-4. Processing diagram for the formation of glass-ceramic 8 Figure 1-5. From glass to glass-ceramic. (a) Nuclei formation, (b) crystal growth on nuclei, and (c) glass-ceramic microstructure. 8 [Obtained from Höland and Beall (2012) under fair use, 2015](Holand & Beall, 2012) 8 Figure1-6. CIEL*a*b* Diagram (El-Meliegy & van Noort, 2012) 10 Figure1-7. The Visible Light Diagram (El-Meliegy & van Noort, 2012) 10 Figure1-8. The Chormacity Diagram (El-Meliegy & van Noort, 2012) 11 Figure 4-1. Experimental flow chart of lithium disilicate glass powder preparation 16 Figure 4-2. Experimental flow chart of glass-ceramic formation. 17 Figure 4-3. Graph of temperature versus time for the calcination of initial powder 21 Figure 4-4. Graph of temperature versus time for the melting process 21 Figure 4-5. Heat treatment temperature profile of glass-ceramic’s morphology. 22 Figure 4-6. Heat treatment temperature profile of glass-ceramic. 22 Figure 5-1. DSC diagram of the glass specimen 32 Figure 5-2. XRD patterns of the glass with different heat treatment profile. 34 Figure 5-3. Epitaxial growth of cristobalite, lithium metasilicate, and lithium disilicate on lithium orthophosphate crystal. LS= lithium metasilicate, CR= cristobalite, LS2= lithium disilicate, and LP=lithium orthophosphate [obtained from Headley et al. (1984) under fair use, 2015](Headley & Loehman, 1984) 37 Figure 5-4. SEM micrograph of glass-ceramic heat treated at 650℃for 30 minutes with 10,000x magnification 39 Figure 5-5. SEM micrograph of glass-ceramic heat treated at 650℃for 30 minutes and 700℃for 30 minutes with 10,000x magnification. 40 Figure 5-6. SEM micrograph of glass-ceramic heat treated at 650℃ for 30 minutes and 740℃for 30 minutes with 10,000x magnification. 40 Figure 5-7. SEM micrograph of glass-ceramic heat treated at 650℃ for 30 minutes and 800℃for 30 minutes with 10,000x magnification. 41 Figure 5-8. Vickers’ hardness of glass-ceramic heat treated with varies heat treatment temperatures. (I) Heat-treated at 650℃for 30minutes, (II) Heat-treated at 650℃ for 30minutues then 700℃ for 30minutes, (III) Heat-treated at 650℃ for 30minutues then 740℃ for 30minutes, (IV) Heat-treated at 650℃ for 30minutues then 800℃ for 30minutes 43 Figure 5-9. Statistical analysis of biaxial flexure strength vs heat treatment 44 Figure 5-10. Biaxial flexure strength of glass-ceramic with varies heat treatment temperature. (I) Heat-treated at 650℃for 30minutes, (II) Heat-treated at 650℃ for 30minutues then 700℃ for 30minutes, (III) Heat-treated at 650℃ for 30minutues then 740℃ for 30minutes, (IV) Heat-treated at 650℃ for 30minutues then 800℃ for 30minutes 45 Figure 5-11. The crack lengths of glass loaded with 10N and hold for 15seconds. 47 Figure 5-12. The crack lengths of profile (III) loaded with 10N and hold for 15seconds 47 Figure 5-13: Biaxial flexure strength of glass-ceramic doped with volume percentage of CeO2 49 Figure 5-14: Biaxial flexure strength of glass-ceramic doped with volume percentage of Er2O3 49 Figure 5-15: Biaxial flexure strength of glass-ceramic doped with volume percentage of V2O5 50 Figure 5-16. The XRD diagram of glass-ceramic doped with one volume percentage of coloring agents. a) Vanadium oxide, b) Erbium oxide, c) Cerium oxide. 50 Figure 5-17. Glass-ceramic doped with vol% of cerium oxide. From left to right: 1vol%, 0.8vol%, 0.6vol%, 0.4vol%, and normal glass-ceramic 51 Figure 5-18. Glass-ceramic doped with vol% of erbium oxide. From left to right: 1vol%, 0.8vol%, 0.6vol%, 0.4vol%, and normal glass-ceramic 52 Figure 5-19. Glass-ceramic doped with vol% of vanadium oxide. From left to right: 1vol%, 0.8vol%, 0.6vol%, 0.4vol%, and normal glass-ceramic 52 Figure 5-20. Glass-ceramic doped with 0.4 vol% of three types coloring agents. From left to right: cerium oxide, erbium oxide, vanadium oxide, and normal glass-ceramic 53 Figure 5-21. Glass-ceramic doped with 1 vol% of three types coloring agents. From left to right: cerium oxide, erbium oxide, vanadium oxide, and normal glass-ceramic. 53 Figure 5-22. Contrast ratio diagram of glass-ceramic doped with volume percentages of cerium oxide. 54 Figure 5-23 Contrast ratio diagram of glass-ceramic doped with volume percentages of erbium oxide 55 Figure 5-24. Contrast ratio diagram of glass-ceramic doped with volume percentages of vanadium oxide 55 Figure 5-25. Translucency parameter diagram of glass-ceramic doped with volume percentages of cerium oxide 57 Figure 5-26. Translucency parameter diagram of glass-ceramic doped with volume percentage of erbium oxide 57 Figure 5-27. Translucency parameter diagram of glass-ceramic doped with volume percentage of vanadium oxide 58

References
Apel, E., van't Hoen, C., Rheinberger, V., & Holand, W. (2007). Influence of ZrO2 on the crystallization and properties of lithium disilicate glass-ceramics derived from a multi-component system. J Eur Ceram Soc, 27(2-3), 1571-1577.
Bühler-Zemp, P., Völkel, T., & Fischer, K. (2011). Scientific Documentation IPS e.max Press. from Ivoclar Viviadent AG:
CIE (Commission Internationale de l’Eclairage.) Colorimetry-technical report. (1996). Vienna.
Da Silva, J. D., Park, S. E., Weber, H. P., & Ishikawa-Nagai, S. (2008). Clinical performance of a newly developed spectrophotometric system on tooth color reproduction. J Prosthet Dent, 99(5), 361-368.
El-Meliegy, E., & van Noort, R. (2012). Glasses and Glass Ceramics for Medical Applications.
Fernandes, H. R., Tulyaganov, D. U., Goel, A., & Ferreira, J. M. F. (2012). Effect of K2O on structure-property relationships and phase transformations in Li2O-SiO2 glasses. J Eur Ceram Soc, 32(2), 291-298.
Fernandes, H. R., Tulyaganov, D. U., Goel, I. K., & Ferreira, J. M. F. (2008). Crystallization Process and Some Properties of Li(2)O-SiO(2) Glass-Ceramics Doped with Al(2)O(3) and K(2)O. Journal of the American Ceramic Society, 91(11), 3698-3703.
Fernandes, H. R., Tulyaganov, D. U., Pascual, M. J., Kharton, V. V., Yaremchenko, A. A., & Ferreira, J. M. F. (2012). The role of K2O on sintering and crystallization of glass powder compacts in the Li2O-K2O-Al2O3-SiO2 system. J Eur Ceram Soc, 32(10), 2283-2292.
Habelitz, S., Carl, G., Rüssel, C., Thiel, S., Gerth, U., Schnapp, J.-D., et al. (1997). Mechanical properties of oriented mica glass ceramic. Journal of Non-Crystalline Solids, 220(2), 291-298.
Hasdemir, I., Bruckner, R., & Deubener, J. (1998). Crystallisation of lithium di- and metasilicate solid solutions from Li2O-SiO2 glasses. Physics and Chemistry of Glasses, 39(5), 253-257.
Headley, T. J., & Loehman, R. E. (1984). Crystallization of a Glass-Ceramic by Epitaxial-Growth. Journal of the American Ceramic Society, 67(9), 620-625.
Holand, W., & Beall, G. H. (2012). Glass-ceramic technology (Second ed.).
Holand, W., Schweiger, M., Frank, M., & Rheinberger, V. (2000). A comparison of the microstructure and properties of the IPS Empress 2 and the IPS Empress glass-ceramics. J Biomed Mater Res, 53(4), 297-303.
James, P. (1985). Kinetics of crystal nucleation in silicate glasses. Journal of Non-Crystalline Solids, 73(1), 517-540.
Johnston, W. M. (2009). Color measurement in dentistry. J Dent, 37, e2-e6.
Levin, E. M., Robbins, C. R., & McMurdie, H. F. (1975). Phase Diagrams for Ceramists. The Am Ceram Soc.
Moser, J. B., Wozniak, W. T., Muller, T. P., & Moore, B. K. (1978). Use of the Munsell system to compute color differences in composite resins. J Dent Res, 57(11-12), 958-963.
Ohta, N., & Robertson, A. (2006). Colorimetry: fundamentals and applications: John Wiley & Sons.
Perez Mdel, M., Saleh, A., Yebra, A., & Pulgar, R. (2007). Study of the variation between CIELAB delta E* and CIEDE2000 color-differences of resin composites. Dent Mater J, 26(1), 21-28.
Shenoy, A., & Shenoy, N. (2010). Dental ceramics: An update. J Conserv Dent, 13(4), 195-203.
Soares, P. C., Zanotto, E. D., Fokin, V. M., & Jain, H. (2003). TEM and XRD study of early crystallization of lithium disilicate glasses. Journal of Non-Crystalline Solids, 331(1-3), 217-227.
Stookey, S. (1959). Catalyzed crystallization of glass in theory and practice. Industrial & Engineering Chemistry, 51(7), 805-808.
von Clausbruch, S. C., Schweiger, M., Holand, W., & Rheinberger, V. (2001). Effect of ZnO on the crystallization, microstructure, and properties of glass-ceramics in the SiO2-Li2O-ZnO-K2O-P2O5 system. Glass Science and Technology-Glastechnische Berichte, 74(8), 223-229.
Wee, A. G., Lindsey, D. T., Shroyer, K. M., & Johnston, W. M. (2007). Use of a porcelain color discrimination test to evaluate color difference formulas. J Prosthet Dent, 98(2), 101-109.
West, A. R., & Glasser, F. P. (1971). Crystallization of Li2O-SiO2 glasses. Columbus, OH: American Ceramic Society.
Zanotto, E. D., & James, P. F. (1985). Experimental tests of the classical nucleation theory for glasses. Journal of Non-Crystalline Solids, 74(2), 373-394.
Zheng, X., Wen, G., Song, L., & Huang, X. X. (2008). Effects of P2O5 and heat treatment on crystallization and microstructure in lithium disilicate glass ceramics. Acta Materialia, 56(3), 549-558.

無法下載圖示 校內:2025-12-31公開
校外:不公開
電子論文尚未授權公開,紙本請查館藏目錄
QR CODE