簡易檢索 / 詳目顯示

研究生: 李先偉
Li, Shien-wei
論文名稱: 正壬烷蒸氣在帶電及中性SiO2(6nm~30nm)及甘露糖(8nm~30nm)奈米微粒上之非均勻相核凝現象
Heterogeneous Nucleation of n-nonane Vapor on charged/neutral nanoparticles of SiO2 (6nm~30nm) and D-mannose (8nm~30nm)
指導教授: 陳進成
Chen, Chin-cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 141
中文關鍵詞: 正壬烷非均勻相核凝雲霧室
外文關鍵詞: nonane, flow cloud chamber, heterogeneous nucleation
相關次數: 點閱:60下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在大氣中因為天然及人為因素產生相當多的奈米微粒,成為大氣氣膠中重要成分,其物理及化學性質對大氣以及氣候有著巨大的影響。本研究以電噴霧法製備二氧化矽(SiO2,6nm~30nm)以及甘露糖(D-Mannose,8nm~30nm)奈米微粒並以流動型雲霧室來探討帶電或中性微粒在正壬烷蒸氣中所引起之非均勻相核凝機構。
    SiO2微粒及甘露糖微粒在過飽和正壬烷蒸氣中,其臨界過飽和度值皆隨著粒徑減小而增高,此粒徑效應與理論定性描述一致,與理論模擬之定量上則有一段差距。
    在電荷效應方面,SiO2微粒在實驗粒徑範圍內並無顯現電荷效應,而甘露糖微粒在小粒徑時,中性微粒之臨界過飽和度高於帶單一正電荷及單一負電荷的微粒。在電荷極性效應方面,當粒徑小至6nm時,對於SiO2帶單一負電荷的微粒而言,其臨界過飽和度稍高於帶單一正電之微粒,但對甘露糖微粒則無明顯差別,而理論預期非極性的正壬烷分子核凝時應無電荷極性效應的產生。
    由比較無機與有機微粒的引起核凝所需的臨界過飽和度,可發現有機甘露糖微粒的核凝能力高於無機二氧化矽微粒,此現象推測與蒸氣在微粒表面的潤濕性有關。

    Nanoparticles may have a property different from the bulk due to their small size. Recently, the subjects concerning their production, properties and applications have received extensively attention and been intensively investigated. On the other hand, nanoparticles are generated due to natural and anthropogenic activities, and become an important component of the atmospheric aerosols. In the study, an electrospray aerosol generator was used to generate organic/inorganic nanoparticles and a flow cloud chamber(FCC) was employed to examine the effects of particle size and charge on the critical supersaturation for the condensation of a supersaturated n-nonane vapor on organic/inorganic nanoparticles with a diameter from 6 to 30nm, each carrying a single positive or negative charge or no charge.
    The results show that the experimental critical supersaturation(Scr) decreases with increasing particle size, at a rate in reasonable agreement with that predicted by Fletcher’s version of Volmer’s theory of heterogeneous nucleation.
    There are almost no different in the experimental Scr between the neutral and charged SiO2 particles. That means there is no charge effect observed in the SiO2 particle size range we measured. But it is observed in mannose particles. In the sign preference, for 6nm SiO2 particles, the experiment results show that nonane could condense more readily on positively charged particle, while for mannose there is no such different, agreeing with the theoretical prediction.
    Furthermore, nonane condense on organic mannose particles more efficiently than on inorganic SiO2 particles. This phenomenon may be caused by their difference in the wettability and contact angle.

    目錄 中文摘要…………………………………………………….………………Ⅰ 英文摘要…………………………………………………...……...…………II 誌謝.................................................................................................................Ⅳ 目錄……………………………………………………………..……...……Ⅴ 表目錄……………………………………...…………………..……………Ⅸ 圖目錄…………………………………………...……………..…………ⅩⅠ 符號說明……………………………………………...……..……………ⅩⅣ 第一章 緒言 1 1.1 簡介………………………………………………………...………….....1 1.2 非均勻相核凝文獻回顧………………………………………...……….6 1.3 研究目標....................................................................................................9 第二章 理論分析 13 2.1 電噴霧法 ……………………………………………………………....13 2.1.1 電噴霧法製備微粒的原理……...……………………………..…..13 2.1.2 電噴霧法的應用與發展...................................................................17 2.2 核凝理論……………………………………...………………..……….20 2.3 不可溶中性微粒ΔG之計算....................................................................22 2.3.1 不可溶帶電微粒ΔG之計算.............................................................27 2.4 可溶性微粒ΔG之計算............................................................................28 2.4.1 可溶性微粒尚未完全溶解...............................................................29 2.4.2 微粒已完全溶解................................................................................31 2.4.3 可溶性帶電微粒ΔG之計算.............................................................32 2.4.3.1 可溶性帶電微粒尚未完全溶解................................................32 2.4.3.2 可溶性帶電微粒已完全溶解....................................................33 2.5 雲霧室中溫度、密度與過飽和度分佈....................................................35 第三章 實驗系統及操作 43 3.1 實驗系統………………...…………………………………..………….43 3.1.1 微粒產生器…………………………………………………………47 3.1.2 電力篩選器…………………...……………………...…………….51 3.1.3 微粒電荷中和器…………………...…………………..…………..54 3.1.4 電場收集器……………………………...…………………………55 3.1.5 流動型雲霧室………………………………..…………………….57 3.1.6 超細微粒凝結核計數器………………………...…………………60 3.1.7 掃瞄式粒徑分析儀…………………………………...……………62 3.2 實驗藥品…………...…………………………………………………...64 3.3 實驗步驟………………...………………………………..…………….65 3.3.1 電噴霧系統操作………...…………………………..……………..65 3.3.2 去除效率實驗………………...……………………………………67 3.3.3 電荷極性效應實驗………………...………………………………71 3.4 理論模擬臨界過飽和度…………………...……………….…………..73 第四章 實驗結果及討論 74 4.1 電噴霧法製備之微粒與微粒TEM粒徑分析……...………..…………75 4.1.1 製備SiO2微粒之最佳操作條件及粒徑分析……..……..………..75 4.1.2 製備甘露糖微粒之最佳操作條件及粒徑分析……….…..………76 4.1.3 微粒之TEM分析……………………………..………….………..78 4.2 空白實驗………………………………………………...…….………..80 4.3 微粒去除效率實驗結果……………………………………...…..…….82 4.4 無機微粒實驗值與理論值比較………………………………………..88 4.4.1 無機微粒之電荷效應對臨界過飽和度之影響………………...…95 4.4.2 無機微粒之電荷極性效應對臨界過飽和度之影響…...……..…101 4.5 有機微粒實驗值與理論值比較………………………………………105 4.5.1 有機微粒之電荷效應對臨界過飽和度之影響………….……....109 4.5.2 有機微粒之電荷極性效應對臨界過飽和度之影響………....….112 4.6 有機微粒與無機微粒之比較…………...…………………………….116 4.7 表面張力對核凝速率的影響………………...……………………….119 4.8 蒸氣分子對核凝現象之影響……………………...………………….124 4.8.1 蒸氣分子對臨界過飽和度之影響………………...……..………125 4.8.2 蒸氣分子對電荷極性效應之影響……………………...…..……129 第五章 結論 131 參考文獻 133 自述 141

    1. Zettlemoyer, A.C., “NUCLEATION”, Chap.4, p.151, (Marcel Dekker, Inc.)
    2. Fletcher, N.H., “Physics of Rainclouds”, 1st Ed., Cambridge University Press, p.390(1962)
    3. Pruppacher, H.R. and Klett, J.D., “Microphysics of Clouds and Precipitation”, (Reidel, Holland), p.714(1980)
    4. Twomey, S., Piepgrass, M. and Wolfe, T.L., “An assessment of the impact of pollution on globo cloud albedo”, Tellus, v36B, p.356(1984)
    5. Chen, Chin-Cheng and Tao, Chun-Ju, ”Condensation fo supersaturated water vapor on submicron particles of SiO2 and TiO2”, J. Chem. Phys., v112, n22, p.9967~9977(2000)
    6. Hinds, W.C., “Aerosol Technology”, (Wiley, New York)(1982)
    7. Sir J. J. Thomson, “Electricity study through gases,” 3rd. Ed., v.320-333 pp.
    8. Kusaka, Z. G. Wang, and J. H. Senjeld, “Ion-induced nucleation II. polarizable multipolar molecules,” J. Chem. Phys.103(20), 899(1995)
    9. C. T. R. Wilson, “Condensation of water vapor in the presence of dustfree air and other gases,” Phil. Trans. 189(A), 265 (1897)
    10. 陶君儒, “水蒸氣在SiO2、TiO2、葡萄糖與麩胺酸鈉次微米微粒上之非均勻相核凝” 博士論文, 國立成功大學, (2000)
    11. V. K. Lamer and R. Gruen, “A Direct Test of Kelvin’s equation Connecting Vapor Pressure and Radius of Curvature”, Trans. Faraday Soc. v.48, p.410 (1952)
    12. Volmer, M., and Weber, A., Z. Physik. Chem. (Leipzig) 119, 227(1926)
    13. N. H. Fletcher, “Size Effect in Heterogeneous Nucleation”, J. Chem. Phys. v.29, p.572-576 (1958)
    14. A. Bateni, A. Ababneh, J. A. W. Elliot, A. W. Neumann and A. Amirfazli, “Effect of Gravity and electric field on shape and surface tension of drops”, Advanced in space Research, 36, 64-69(2005)
    15. A. Bateni, S. Laughton, H. Tavana, S. S. Susnar, A. Amirfazli and A. W. Neumann, “Effect of electric field on contact angle and surface tension of drops”, Journal of Colloid and Interface Science, 283, 215-222(2005)
    16. Smorodin, V. Ye., “Mixed aerosol particles as effective ice nucleating systems”, Atoms. Res. 31(1-3), 199-233(1994)
    17. Smorodin, V. Ye., “On thermohydrodynamic instablities in aerosol hazes (fogs)”, Atoms. Environ. 31(8), 1239-1247(1997)
    18. Smorodin, V. Ye. and Hopke, P. H., “Condensation activation and nucleation on heterogeneous aerosol nanoparticles”, J. Phys. Chem., B 108(26), 9147-9157(2004)
    19. Smorodin, V. Ye. and Hopke, P. H., “Relationship of heterogeneous nucleation and condensational growth on aerosol nanoparticles”, Atom. Res. 82, 591-604(2006)
    20. Chen, Chin-Cheng and Cheng, Hsiu-Chin “Effects of charge and size on condensation of supersaturated water vapor on nanoparticles of SiO2”, J. Chem. Phys. 126, 034701(2007)
    21. A. Bateni, S. S. Susnar, A. Amirfazli, and A. W. Neumann, “Development of a New Methodology to Study Drop Shape and Surface Tension in Electric Fields”, Langmuir, v.20, p.7589(2004)
    22. A. Bateni, S. Laughton, H. Tavana, S. S. Susnar, A. Amirfazli and A. W. Neumann, “Effect of Electric Fields on Contact Angle and Surface Tension of Drops”, J. Colloid Interface Sci. v.283, p.215(2005)
    23. M. Sato, N. Kudo and M. Saito, “Surface Tension Reduction of Liquid by Applied Electric Field Using Vibrating Jet Method”, IEEE Trans. Ind. Appl. v.34, p.294(1998)
    24. 陳泓旭, “正丁醇與水在帶電奈米微粒上之非均勻相核凝”, 碩士論文, 國立成功大學化工系(2002)
    25. 鄭秀津, “水蒸氣在帶電與中性SiO2不可溶奈米微粒上之非均勻相核凝” , 碩士論文, 國立成功大學化工系(2002)
    26. 陳彥宇, “電噴霧法製備SiO2奈米微粒及正丁醇蒸氣在微粒上之非均勻相核凝”, 碩士論文, 國立成功大學化工系(2003)
    27. 林佳德, “正丁醇蒸氣在無機TiO2與有機甘露糖奈米微粒上之非均勻相核凝”, 碩士論文, 國立成功大學化工系(2004)
    28. 沈于安, “正丁醇蒸氣在SiO2(10nm-6nm)與鼠李糖(25nm-8nm)微粒上之非均勻相核凝”, 碩士論文, 國立成功大學化工系(2005)
    29. 劉旂甫, “水及正丁醇蒸氣在TiO2與甘露糖帶電與中性微粒上之非均勻相核凝”, 碩士論文, 國立成功大學化工系(2006)
    30. 李傳傑, “電噴霧法製備SiO2(6-10nm)、葡萄糖(8-30nm)、味精(8-30nm)奈米微粒及水蒸氣在帶電與中性微粒上非均勻相核凝之研究”, 碩士論文, 國立成功大學化工系(2007)
    31. J. R. Llompart and J. Fernandez De La Mora, “Generation of Monodisperse droplets 0.3 to 4μm in Diameter from Electrified Cone-jets of Highly Conducting and Viscous Liquids”, J. Aerosol Sci. v.25, p.1093(1994)
    32. M. Cloupeau and B. Prunet-Foch, “Electrohydrodynamic Spraying Functioning Modes: a Critical Review”, J. Aerosol Sci. v.25, p.1021(1994)
    33. W. Franklin Smyth, “Trends in analytical chemistry”, 1999, V.18, n.5, p.335
    34. A. Jaworek and A. Krupa, “Classification of the modes of EHD spraying”, J. Aerosol Sci., Vol.30, No7, pp873~893, (1999)
    35. R. P. A. Hartman, D. J. Brunner, D. M. A. Camelot, J. C. M. Marijinissen and B. Scarlett, “Electrohydrodynamic atomization in the cone-jet mode physical modeling of the liquid cone and jet”, J. Aerosol Sci. , Vol.30 , No.7, pp. 823~849(1999)
    36. W. Franklin Smyth, “Trends in analytical chemistry”, V.18, n.5, p.335(1999)
    37. S. L. Kaufman, “Electrospray diagnostics performed by using sucrose and proteins in the gas-phase electrophoretic mobility molecular”, Special Issue on Ion Formation Mechanisms in Electrospray, ed. S. Rutan and J. Fenn(1999)
    38. R. P. A. Hartman, D. J. Brunner, D. M. A. Camelot, J. C. M. Marijnissen and B. Scarlett, “Jet Break-up in Electrohydrodynamic Atomization in the Cone-jet Mode”, J. Aerosol Sci., 31, v.1, p.65-95(2000)
    39. L. Stanley, J. Kaufman, “Analytical Chemistry News and Features”, 4, 6, 386 A.
    40. Y. Osamu, K. Tomonori, M. Akira, “Properties of droplet formation made by cone jet using a novel capillary with an external electrode” J. Electorstatics, 64 p.634-638(2006)
    41. P. Hyungho, K. Kyoungtae and K. Sangsoo, “Effects of a guard plate in the characteristics of an electrospray in the cone-jet mode”, J. Aerosol Science, v.35 p.1295-1312(2004)
    42. J. F. de la Mora, G. J. Van Berkel, C. G. Enke, R. B. Cole, M. M. Sanchez and J. B. Fenn, “Electrochemical Processes in Electrospray Ionization Mass Spectrometry”, J. Mass Spectrom., v.35 p.939-952(2000)
    43. R. B. Cole, “Some Tenets Pertaining to Electrospray Ionization Mass Spectrometry”, J. Mass Spectrom., v.35 p.763-772(2000)
    44. Y. Li, B. P. Pozniak, R. B. Cole, “Mapping of Potential Gradients within the Electrospray Capillary”, Anal. Chem. v.75 p.6987-6994(2003)
    45. B. P. Pozniak and R. B. Cole, “Negative Ion Mode Evolution of Potential Buildup and Mapping of Potential Gradients within the Electrospray Emitter”, J. Am. Soc. Mass Spectrom. v.15 p.1737-1747(2004)
    46. X. Xu, W. Lu, R. B. Cole, “On-line Probe for Fast Electrochemistry/Electrospray Mass Spectrometry. Investigation fo Polycyclic Aromatic Hydrocarbons”, Anal. Chem. v.68 p.4244-4253(1996)
    47. B. P. Pozniak and R. B. Cole, “Ambient Gas Influence on Electrospray Potential as Revealed by DEEP Mapping Within the Electrospray Capillary, A 040716. Proceedings of the 52nd ASMS Conference on Mass Spectrometry and Allied Topics”, Nashville, TN, (2004)
    48. W. Lu, X. Xu, R. B. Cole, “On-line Linear Sweep Voltammetry-Electrospray Mass Spectrometry”, Anal. Chem. v.69 p.2478-2484(1997)
    49. B. P. Pozniak and R. B. Cole, “Current Measurements within the Electrospray Emitter”, J. Am. Soc. Mass Spectrom. v.18(2007)
    50. N. H. Fletcher, “The Physics of Rainclouds”, 1st Ed., (Cambridge University Press), p.390(1969)
    51. W. J. Dunning, “Chemistry of the Solid State”, (Academic Press), NY.(1955)
    52. J. J. Thomson, “Conductionof Electricity Through Gases”, 3rd Ed., v.1(Cambridge University, Cambridge), p.320(1928)
    53. M. Volmer, “Kinetic der Phasenbildung”, Verlag Th. Steinkopff, Dresden(1939)
    54. K. C. Russell, “Nucleation on gaseous ions”, J. Chem. Phys., v.50 p.1809(1969)
    55. L. R. White, “Deviation from Young’s Equation”, J. Chem. Soc. Faraday Trans. I, v.73 p.390(1977)
    56. C. C. Chen, L. C. Hung and H. K. Hsu, “Heterogeneous nucleation of water vapor on particles of SiO2, Al2O3, TiO2 and carbon black”, J. Colloid. Interface Sci., v.157 p.465(1993)
    57. J. L. Katz and B. J. Ostermier, “Diffusion cloud chamber investigation of homogeneous nucleation”, J. Chem. Phys., v.47 p.478(1967)
    58. 許豪仁, “正丁醇蒸氣在味精與乳糖次微米上之非均勻核凝現象”, 碩士論文, 國立成功大學化工系,(1997)
    59. Model 3080 Electrostatic Classifier Instruction Manual, TSI Inc.(2002)
    60. Model 3071A Electrostatic Classifier, TSI company
    61. Model 3077 Aerosol Neutralizer, TSI company
    62. 郭明升, “水蒸氣在不溶性無機次微米微粒上之非均勻相核凝現象”, 碩士論文, 國立成功大學化工系,(1995)
    63. J. L. Katz, “Condensation of a Supersaturated Vapor, I. The homogeneous Nucleation of the n-Alkanes”, J. Chem. Phys., v.52 p.4733(1970)
    64. Model 3025A, Ultrafine Condensation particle Counter Instruction Manual, TSI Inc.(2002)
    65. Model 3934 SMPS (Scanning Mobility Particle Sizer) Instrucion Manual, TSI Inc.
    66. C. C. Chen, M. S. Guo, Y. J. Tsai and C. C. Huang, “Heterogeneous Nucleation of Water Vapor on Submicrometer Particles of SiC, SiO2 and Naphthalene”, J. Colloid Interface Sci., v198, p354(1998)
    67. L. B. Loeb, A. F. Kip and A. W. Einarsson, “On the Nature of Ionic Sign Perference in C. T. R. Wilson Cloud Chamber Condensation Experiments”, J. Chem. Phys. v.6, p.265(1938)
    68. P. V. Hobbs, “Ice Physics”, Clarendon Press, Oxford(1974)
    69. J. Schmelzer and R. J. Mahnke, “General Formation for the Curvature Dependence of Droplets and Bubbles”, J. Chem. Soc., Faraday Trans. I, v.82 p.1413(1986)
    70. 黃崇銓, “正丁醇蒸氣在不溶性無機次微米微粒上之非均勻相核凝現象”, 碩士論文, 國立成功大學化工系,(1997)
    71. 蔡聞庭, “正丁醇蒸氣在可溶性D-Mannose與L-Rhamnose次微米微粒上之非均勻相核凝”, 碩士論文, 國立成功大學化工系(2000)
    72. K. C. Russell, “Nucleation on Gaseous Ions”, J. Chem. Phys., v.50, p.1809(1969)
    73. R. J. Good, “A Theory for the Estimation of Surface and Interfacial Energies, I. Derivation and Application to Interfacial Tension”, J. Phys. Chem., v.61, p.904-909(1957)
    74. 蔡宜哲, “水蒸氣在不溶性次微米微粒上之非均勻相核凝現象”, 碩士論文, 國立成功大學化工系(1996)

    下載圖示 校內:2009-07-30公開
    校外:2009-07-30公開
    QR CODE