簡易檢索 / 詳目顯示

研究生: 陳俊廷
Chen, Jiun-ting
論文名稱: III-V族化合物多接面式太陽能電池特性之研究
Investigation of III-V Compounds Multi-Junction Solar Cells
指導教授: 李清庭
Lee, Ching-ting
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 98
中文關鍵詞: 硫化氨磷化鋁銦多接面式太陽能電池
外文關鍵詞: AlInP, (NH4)2Sx, Multi-Junction Solar Cells
相關次數: 點閱:64下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之主要研究目的是藉由表面處理來鈍化(Passivation) III-V 族
    化合物多接面式太陽能電池中之磷化鋁銦層(AlInP, Window layer),並分
    析表面處理前後元件整體效率(η)、電流-電壓(I-V)特性(包括短路電流、
    開路電壓)及其串聯電阻(Rs)、並聯電組(Rsh)的變化。在本次研究中,利用
    硫化銨((NH4)2Sx) 溶液進行N 型磷化鋁銦層(AlInP)表面處理,並針對不
    同抗反射膜(ARC)材料,對試片進行光電特性之分析,探討表面處理後其
    界面所產生之影響。其次,對太陽電池元件進行照光與未照光的電流-電
    壓特性量測,並比較其硫化處理前後特性之變化。
    本實驗利用X 光光電子能譜術(XPS)分析表面處理前後磷化鋁銦
    (AlInP)的鍵結變化,並由XPS 圖譜分析指出,經由硫化處理後其表面會
    形成銦-硫(In-S)鍵結,硫原子會與經蝕刻液處理過後表面銦原子之懸浮鍵
    鍵結,並取代部分因蝕刻液所造成之銦-氧(In-O)、鋁-氧(Al-O)鍵結,進
    而造成鈍化之效果,經由鈍化處理可減少表面態密度及降低表面復合速
    度,使元件漏電流降低、整體電流提升。此外,利用蕭基二極體的製作
    及變溫電流-電壓(I-V-T)量測,分析硫化處理後磷化鋁銦層表面鈍化之特
    性。最後,藉由蕭基能位障(Schottky barrier height)的變化與太陽能電池
    照光與未照光之電流-電壓分析,XPS 表面鍵結型態分析作一系列之探討與研究。

    The purpose of this research is to investigate the passivation mechanism of
    the window layer (AlInP) of III-V compounds multi-junction solar cells by using
    (NH4)2Sx solution treatment. The optical and electrical properties of the n-type
    AlInP layer with and without (NH4)2Sx treatment under different anti-reflection
    coating (ARC) materials would be analyzed. Besides, the conversion efficiency
    of the multi-junction solar cell, I-V characteristics (Isc,Voc), series and parallel
    resistances before and after the (NH4)2Sx treatment would be investigated.
    Furthermore, the Current-Voltage (I-V) measurement of solar cell would be
    compared with and without illumination after the (NH4)2Sx treatment.
    In this experiment, the X-ray photoelectron spectroscopy (XPS) was
    utilized to analyze the bonding configurations of the n-type AlInP surface before
    and after the (NH4)2Sx solution treatment. The XPS spectra indicates that In-S
    bonds can be formed on the AlInP surface after the (NH4)2Sx solution treatment.
    The S atoms would bond with indium dangling bonds to form In-S bonds to
    replace the In-O and Al-O bonds which were formed after using the selective
    etching solution (NH4OH/H2O2/H2O, 1:1:50). The surface state density and surface recombination rate would be reduced after the (NH4)2Sx treatment and
    the leakage current would be improved. In addition, the Schottky diode and
    temperature dependent current-voltage (I-V-T) measurements were used to
    analyze the passivated surface of the AlInP layer. Based on the experimental
    results, correlations among the bonding configuration, Schottky barrier height
    and I-V measurement are discussed, which provide the guidelines for the
    performance provement in the III-V multi-junction solar cells.

    中文摘要..… … … … ...Ⅰ Abstract (English) …… .. III 致謝… … … … … … … … ..V 目錄… … … … … …...… .VII 表目錄… … … … … … .... IX 圖目錄… … … … … … … ..X 第一章前言..........................1 1-1 化合物太陽能電池發展之近況..… … … … 1 1-2 化合物太陽能電池與矽太陽能電池之比較.........4 1-3 半導體表面硫化處理之概述… … … ...7 References… … … … .9 第二章理論背景與量測....................24 2-1 太陽能電池之基本理論與背景介紹.............24 2-2 太陽能電池等效電路之原理與介紹.......26 2-3 X 光光電子能譜儀量測.........29 2-4 傳輸線模型… … … ..31 2-5 抗反射膜之理論… … … ..32 2-6 蕭特基二極體變溫I-V量測模型… … … … ...34 References… … … … 37 第三章實驗步驟.............50 3-1 利用XPS 觀測未使用與使用硫化氨溶液處理磷化鋁銦表面之差異.......50 3-2 估算磷化鋁銦使用硫化銨溶液處理前後之蕭基能障高度與表面態密度變化.............51 3-3 製作並優化之TiO2/SiO2與ITO/SiO2雙層抗反射膜..............52 3-4 以傳輸線模型(TLM)製作砷化銦鎵之歐姆接觸… … … .53 3-5 太陽能電池元件製作程序...............54 第四章結果討論與量測..............65 4-1 ITO薄膜光電特性量測與分析… … … …… 65 4-2 探討N 型砷化銦鎵於蒸鍍金屬電極(金-鍺-鎳/金)後經不同時間與不同溫度之熱處理並做電特性之分析… … … .67 4-3 雙層抗反射膜TiO2/SiO2 與ITO/SiO2 光電特性之比較… … … 68 4-4 太陽能電池未照光與照光之電流-電壓曲線比較與分析..........70 4-5 利用XPS 觀測硫化銨溶液處理前後磷化鋁銦表面之差異........72 4-6 比較硫化銨溶液處理前後之表面態密度變化.........74 References… … … 76 第五章結論..................97

    第一章
    [1]C. Algora and V. Diaz, 14th Conf. European Photovoltaic Solar Energy, 1724 (1997).
    [2]M. Yamaguchi and A. Luque, IEEE Trans. Electron Devices, 46, 2139 (1999).
    [3]C. Algora, E. Ortiz, I. Rey-Stolle, V. Diaz, R. Pena, V. M. Andreev, V. P. Khvostikov and V. D. Rumyantsev, IEEE Trans. Electron Devices, 48, 840 (2001).
    [4]Kuribayashi, K. H. Matsumoto, H. Uda, Y. Komatsu, A. Nakano and S.Ikegami, Jpn. J. Appl. Phys., 22, 1828 (1983).
    [5]H. Matsubara, T. Tanabe , A. Moto, Y. Mine, and S. Takagishi, Sol. Energ. Mat. Sol. C., 50, 177 (1998)
    [6]T. Yamada, A. Moto, Y. Iguchi, M. Takahashi, S. Tanaka, T. Tanabe and S. Takagishi, Jpn. J. Appl. Phys., 44, L 985 (2005).
    [7]T. Yamada, A. Moto, Y. Iguchi, M. Takahashi, S. Tanaka, T. Tanabe and S. Takagishi, Jpn. J. Appl. Phys., 44, L 988 (2005).
    [8]M. Yamaguchi, T. Takamoto, K. Araki and N. Ekins-Daukes, Sol. Energy, 79, 78 (2005).
    [9]莊家琛, 太陽能工程-太陽能電池篇, 全華出版社, 2005.
    [10]G. Timo, C. Flores and R. Campesato, Cryst. Res. Technol., 40, 1043 (2005).
    [11]S. M. Sze, Semiconductor Devices Physics and Technology, 2003.
    [12]N. J. Ekins-Daukes, K. W. J. Barnham, J. P. Connolly, J. S. Roberts, J. C. Clark, G. Hill and M. Mazzer, Appl. Phys. Lett., 75, 4195 (1999).
    [13]K. Araki1, H. Uozumi1, T. Egami, M. Hiramatsu, Y. Miyazaki, Y. Kemmoku, A. Akisawa, N. J. Ekins-Daukes, H. S. Lee and M. Yamaguchi, Prog. Photovolt Res. Appl., 13, 513 (2005).
    [14]J. L. Alvarez, V. Díaz, J. Alonso, Isofoton, S. A. Severo Ochoa, Proc. of SPIE, 5962, 596210 (2005).
    [15]P. Sansoni, F. Francini and D. Fontani, Opt. Laser. Eng., 45, 351 (2007).
    [16]M. Yamaguchi, T. Takamoto and Kenji Araki, Sol. Energ. Mat. Sol. C., 90, 3068 (2006).
    [17]T. Takamoto, M. Kaneiwa1, M. Imaizumi, and M. Yamaguchi, Prog. Photovolt Res. Appl., 13, 495 (2005)
    [18]B. Galiana, C. Algora, I. Rey-Stolle, Sol. Energ. Mat. Sol. C., 90, 2589 (2006).
    [19]D. Konig and G. Ebest, Sol. Energ. Mat. Sol. C., 75, 381 (2003).
    [20]M. Yamaguchi et al., Toyota Technological Institute, Nagoya, Japan.
    [21]L. L. Kazmerski, Journal of Electron Spectroscopy and Related Phenomena, 150, 105 (2006).
    [22]J. Massies, J. Chaplart, M. Laviron and N. T. Linh, Appl. Phys. Lett., 38, 693 (1981).
    [23]C. J. Sandroff, R. N. Nottenburg, J. C. Bischoff and R. Bhat, Appl. Phys. Lett., 51, 33 (1987).
    [24]Y. Nannichi, J. Fan, H. Oigawa and A. Koma, Jpn. J. Appl. Phys., 27, L2367 (1988).
    [25]Y. Nannichi and H. Oigawa, Extended Abstracts, 22nd Conf. Solid State Devices & Materials, Sendai 1990, 453 (Business Center for Academic Societies, Tokyo).
    [26]B. J. Skromme, C. J. Sandroff, E. Yablonovitch and T. Gmitter, Appl. Phys. Lett., 51, 2022 (1987).
    [27]M. S. Carpenter, M. R. Melloch, M. S. Lundstrom and S. P. Tobin, Appl. Phys. Lett., 52, 2157 (1988).
    [28]Y. J. Lin, W. X. Lin, C. T. Lee, F. T. Chien, Solid State Commun., 137, 257 (2006).
    [29]C. T. Lee, Y. J. Lin and D. S. Liu, Appl. Phys. Lett., 79, 2573 (2001).
    [30] Y. J. Lin, W. X. Lin, C. T. Lee and H. C. Chang, Jpn. J. Appl. Phys., 45, 2505 (2006).
    [31]J. Fan, Y. Kurata and Y. Nannichi, Jpn. J. Appl. Phys., 28, L2255 (1989).
    [32]P. S. Dutta, K. S. Sangunni, H. L. Bhat and Vikram Kumar, Appl. Phys. Lett., 65, 1695 (1994).
    [33]H. Ishimura, K. Sasaki and H. Tokuda, Int. Symp. GaAs and Related Compounds, Karuizawa, 1989, p. 405.
    [34]H. Oigawa, Y. Kurata, J. Fan and Y. Nannichi, Extended Abstracts of the 37th Spring Meeting, 1990 (The Japan Society of Applied Physics and Related Societies, Chiba, 1990), paper 30a-M9.
    [35]X. Zhang, F. Zhang, E. Lu and P. Xu, Vacuum, 57, 145 (2000).
    [36]Y. J. Lin, C. D. Tsai, Y. T. Lyu and C. T. Lee, Appl. Phys. Lett., 77, 687 (2000).
    [37]G. L. Martizen, M. R. Curiel, B. J. Skromme and R. J. Molnar, J. Electron. Mater., 29, 325 (2000).
    [38]I. K. Han, E. K. Kim, J. I. Lee, S. H. Kim and K. N. Kang, J. Appl. Phys., 81, 15 (1997).
    [39]F. Maeda, Y. Watanabe and M. Oshima, Appl. Phys. Lett., 62, 18 (1993).
    [40] C. D. Tsai and C. T. Lee, J. Appl. Phys., 87, 4230 (2000).
    第二章
    [1]S. M. Sze, Semiconductor Devices Physics abd Technology, 2003.
    [2]I. M. Dharmadasa, Sol. Energ. Mat. Sol. C., 85, 293 (2005).
    [3]C. H. Henry, J. Appl. Phys., 51, 4494 (1980).
    [4]B. Burnett, The Basic Physics and Design of III-V Multijunction Solar Cells, 2002.
    [5]M. A. Green, Solar Cells Operating Principles, Technology and System Application, 1982.
    [6]M. P Thekackra, The Solar Cell Constant and Solar Spectrum Measurement from a Research Aircraft, NASA Technical Report, 1970.
    [7]莊家琛, 太陽能工程-太陽能電池篇, 全華出版社, 2005.
    [8]汪建民, 材料分析, 中國材料科學學會, 1998.
    [9]王志方, 材料表面測定技術, 復漢出版社, 1999.
    [10]黃振昌, X 光光電子能譜儀, 行政院國家科學委員會精密儀器發展中心出版, 1998.
    [11]G. K. Reeves and H. B. Harrison, IEEE Electron Device Lett. EDL, 3, 111 (1982).
    [12]高孝維, 國立中央大學光電科學研究所碩士論文 (1999).
    [13]李正中, 薄膜光學與鍍膜技術, 藝軒出版社, 2002.
    [14]D. A. Neamen, Semiconductor Physics and Devices, 2003.
    [15]D. K. Schroder, Semiconductor Material and Device Characterization, 1998.
    第四章
    [1]E. Burstein, Phys. Rev., 93, 632 (1954).
    [2]S. H. Kim, N. M. Park, T. Y. Kim and G. Y. Sung, Thin Solid Films, 475, 262 (2005).
    [3]L. Kerkache, A. Layadi, E. Dogheche and D. Remiens, J. Phys. D: Appl. Phys., 39, 184 (2006).
    [4]S. Muranaka, Y. Bando and T. Takade, Thin Solid Films, 151, 355 (1987).
    [5]J. L. Lee, Y. T. Kim and J. Y. Lee, Appl. Phys. Lett., 73, 1670 (1998).
    [6]J. Morais, T. A. Fazan, R. Landers, R. G. Pereira, E. A. S. Sato and W. Carvalho, J. Vac. Sci. Technol. B, 15, 1983 (1997).
    [7]S. H. Jeonga, J. K. Kimb, B. S. Kima, S. H. Shima and B. T. Lee, Vacuum, 76, 507 (2004).
    [8]C. Martinet, V. Paillard, A. Gagnaire and J. Joseph, J Non-Crystal Solids, 216, 77 (1997).
    [9]G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin and G.A. Rizzi, Thin Solid Films, 371, 126 (2001).
    [10]W. F. Wu and B. S. Chiou, Appl. Surf. Sci., 99, 237 (1996).
    [11]Y. S. Jung, Thin Solid Films, 467, 36 (2004).
    [12]林祐仲, 國立中央大學光電科學研究所博士論文 (2001).
    [13]J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang and G. C. Chi, IEEE Trans. Electron Devices, 22, 10, 460 (2001).
    [14] P. S. Chen, C. S. Lee, J. T. Yan and C. T. Lee, Electrochem. Solid St., 10, 6, H165 (2007).
    [15]T. Takamoto1, M. Kaneiwa1, M. Imaizumi and M. Yamaguchi, Prog. Photovolt: Res. Appl., 13, 495 (2005).
    [16]K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, T. Fuyuki, Sol. Energy, 90, 1308 (2006).
    [17]C. D. Tsai and C. T. Lee, J. Appl. Phys., 87, 4230 (2000).
    [18]J. L. Leclercq, E. Bergignat and G. Hollinger, Semicond. Sci. Technol., 10, 95 (1995).
    [19]I. K. Han, E. K. Kim, J. I. Lee, S. H. Kim, K. N. Kang, Y. Kim, H. Lim and H. L. Park, J. Appl. Phys., 81, 10, 6986 (1997).
    [20]R. Driad,a) Z. H. Lu, S. Charbonneau, W. R. McKinnon, S. Laframboise, P. J. Poole and S. P. McAlister, Appl. Phys. Lett., 73, 5, 665 (1998).
    [21]I. Yoshibaa, T. Iwaia, T. Ueharaa and Y. Horikoshi, J. Cryst. Growth., 301, 190 (2007).
    [22]Y. J. Lin, C. D. Tsai, Y. T. Lyu and C. T. Lee, Appl. Phys. Lett., 77, 5, 687 (2000).
    [23]O. Katz, V. Garber, B. Meyler, G. Bahir and J. Salzman, Appl. Phys. Lett., 79, 10, 1417 (2001).
    [24]C. T. Lee, Y. J. Lin and D. S. Liu, Appl. Phys. Lett., 79, 16, 2573 (2001).

    下載圖示 校內:2010-09-03公開
    校外:2010-09-03公開
    QR CODE