簡易檢索 / 詳目顯示

研究生: 蔡昌洋
Tsai. Chang-Yang
論文名稱: 三維自我描述地理圖徵描述架構之設計與應用
The Design and Application of 3D Self-Describe Framework for Geographic Feature
指導教授: 洪榮宏
Hong. Jung-Hong
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 321
中文關鍵詞: 城市地理標記語言自我描述細緻度層級標準化三維地理資訊
外文關鍵詞: CityGML, Self-describe, LOD, Standardization, 3D geographic information
ResearchGate: https://www.researchgate.net/profile/Chang-Yang-Tsai
相關次數: 點閱:185下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 仰賴於計算機軟硬體、多元測量技術及三維空間資料標準之進步,三維地理資訊為近年迅速發展之新興課題,許多國內外近年高度受到重視之課題,例如智慧城市、數位孿生、智慧國土等,也大幅運用三維地理資訊而全方位擴展可能的應用。然而縱觀目前之相關應用,絕大部分之實務應用仍侷限於視覺展示,無法有效拓展至實務層面之應用分析及決策輔助,其中關鍵之核心因素為缺乏基於空間現象特性之三維化物件模式及運作機制,導致無法以單一地理圖徵為基礎,進行有效之分析應用及跨域整合,特別是無法針對相異測量技術及需求所產製三維空間資料之特性與品質提出具體之設計及操作配套,更成為推動之瓶頸。在期許以三維資訊帶動地理資訊下一波數位轉型技術革命之目標下,勢必需要重新以三維化之思維,探索及評估如何有效突破三維地理資訊之異質性課題,從而建立高互操作性之跨域分享與應用環境。
    本研究認為未來之環境必須基於「開放」及「標準化」之三維地理圖徵觀點發展,圖徵內容須由物件化之三維觀點切入,透過標準化之應用綱要定義整合異質性之三維空間資料,建立可呈現基礎特性之物件模式化共同描述架構,單一圖徵須具有描述本身空間、屬性、語意及品質之完整能力,構成可獨立運作「自我描述圖徵」,並透過標準化之編碼架構供應,發展相異主題圖徵有效整合、區隔及比較之機制,最後於使用者介面提示跨域圖資之差異及分析成果,達到善用跨域三維地理圖徵及提升多目標應用價值之終極目標。
    本研究首先剖析多元三維地理資訊之描述內容,提出空間單元、坐標參考系統、空間資料模式、幾何表示、空間語意性、細緻度層級、空間關係、空間識別性、空間階層性、時間資訊、空間資料品質等,共11項自我描述所需之基本特性,並在分析各因素具體描述內容之規劃策略後,提出標準化之三維自我描述地理圖徵架構。所有依據自我描述架構所產製之三維地理圖徵均基礎於物件化模式運作,且具備描述自身空間、屬性、語意及品質資訊之完整能力。基於開放及標準化之目標,本研究以CityGML 3.0之核心模組架構為基礎,透過CityGML系列標準中的應用領域擴充(ADE)機制,在符合CityGMl 3.0原始應用綱要規範之前提下,提出自我描述圖徵架構之具體設計策略及擴充自定義之圖徵、資料類別及屬性資訊。
    資料品質為地理資訊建置及應用時必須考量之核心因素,本研究認為所有三維地理資訊資料均須因應其建置特性而記錄合適之標準化品質資訊,以減低錯誤應用及提升跨域資料應用與決策之正確性。細緻度層級(LOD)雖為眾多三維化之資訊所使用之概念,具有品質之考量,但僅能提供三維空間資料概略之規格區隔依據,本研究認為三維自我描述圖徵之應用必須有所突破,因此提出結合LOD及標準化品質資訊之設計策略,除基礎於CityGML 3.0之LOD概念,考量資料建置與應用特性後,提出強化之分級架構外,適合於國內推動外,結合ISO19115及ISO19157之標準化資料品質架構,涵蓋資料歷程、完整性、邏輯一致性、位置精度、主題精度、時間精度及可用性等標準化品質描述由定量及定性品質資訊補強既有LOD架構描述能力不足之問題,並針對LOD之各項規範設計合適之品質評估程序及描述內容,最後透過規則之設計約制不同品質規格資料之整合應用。
    本研究所設計之三維自我描述地理圖徵架構為最上層之共同描述架構,適用於擴充設計相異主題考量之三維地理圖徵,提供所有三維地理圖徵一個具有共識之基礎描述架構及內容參考,不同主題考量之三維圖徵可基礎於此向下擴充,使相異主題之圖徵內容具有更為細緻之描述能力,並納入空間語意及幾何表示之因素而設計建構領域主題之自我描述圖徵架構。藉由三維自我描述地理圖徵架構,當三維圖徵獨立運作時,除原始資料所記錄之屬性資料外,亦可提供其他與圖徵相關之標準化資訊,使用者端則可藉由圖徵之自我描述內容而判斷資料可使用之場合、整合及辨別相異來源或資料品質、區隔各圖徵間之差異或提升其互操作性,以減低決策之風險。基於本研究提出之跨域通用三維自我描述地理圖徵架構,將可提供我國未來推動三維地理資訊基礎建設及跨域資訊自動化品質判斷之策略研擬參考。

    With the breakthrough of computer graphics, survey techniques and spatial data standards, 3D geographic information has been receiving great attention from a variety of domains. Various applications based on 3D geographic information, like smart city and digital twin, have been developed around the world as 3D geographic information becomes more prevalent. However, many applications are restricted to visualization purposes only. One major reason for such limitation is the lack of formalized and comprehensive mechanism for the management and analysis of feature-based 3D geographic data. The potentiality of 3D geographic information for analysis and extended applications is therefore impeded by the failure of integrating the cross-domain 2D and 3D information. Since the 3D geographic information created by multiple survey techniques often have different quality and properties due to the lack of consensus agreement on their respective specifications, it is necessary to redesign an effective strategy for integrating heterogeneous 3D geographic information. Quality has long been considered as an essential component for designing geographic information. Standardizing quality information based on common properties of 3D geographic information is an effective strategy to avoid wrong interpretation and improve the interoperability of cross-domain applications. Level of Detail (LOD) is another common concept widely used for 3D data standards and techniques. Despite the current LOD concept has taken quality into consideration, it however works based on a threshold approach, meaning the selection of 3D data still have to be based on the limited number of levels of detail.
    From a feature-based 3D geographic information perspective, this research purposes an open and self-describe feature framework that can model all the common properties of 3D geographic information with standardized data schema, i.e, CityGML 3.0 and ADE mechanism. Furthermore, this study also combines LOD, ISO19157, and ISO19115 to enhance the ability for describing the various quality aspects of 3D geographic information. With the proposed self-describe feature framework, 3D feature has the superior capability to describe its distinguished properties while being distributed, and user can unambiguously interpret the characteristic, quality, and usability of all the acquired 3D feature, and even develop rules for processing standardized data. This research demonstrates the benefits of the proposed self-describe feature framework and facilitates the development of 3D spatial data infrastructure and automatic quality-aware system in Taiwan.

    摘要 I 誌謝 X 目錄 XII 表目錄 XV 圖目錄 XVIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究目標 4 1.3 研究流程 5 1.4 論文架構 7 第二章 文獻回顧 9 2.1 三維地理資訊特性、建置技術及發展現況 9 2.1.1 三維地理資訊之特性 9 2.1.2 三維地理資訊建置技術 10 2.1.3 三維地理資訊發展現況 17 2.1.4 小結 20 2.2 三維空間之國際標準 20 2.2.1 圖徵物件化之三維資料標準 21 2.2.2 視覺化展示之三維資料標準 27 2.2.3 小結 29 2.3 細緻度層級 35 2.3.1 計算機圖學 35 2.3.2 三維城市領域 36 2.3.3 網路三維地理資訊系統 49 2.3.4 小結 51 2.4 空間資料品質 54 2.4.1 空間資料品質之國際標準 54 2.4.2 我國測製規範之空間品質規定 57 2.4.3 小結 62 第三章 三維地理圖徵模式化之分析與設計 63 3.1 三維地理圖徵特性分析 63 3.1.1 空間單元(Space Unit) 64 3.1.2 坐標參考系統(Coordinate Reference System) 65 3.1.3 空間資料模式(Spatial Data Model) 67 3.1.4 幾何表示(Geometry Representation) 69 3.1.5 空間語意性(Spatial Semantics) 72 3.1.6 細緻度層級(Level of Detail) 73 3.1.7 空間關係(Spatial Relation) 79 3.1.8 空間識別性(Spatial Identifier) 80 3.1.9 空間階層性(Spatial Hierarchy) 83 3.1.10 時間資訊(Time Information) 84 3.1.11 空間資料品質(Spatial Data Quality) 88 3.2 自我描述架構設計策略分析 92 3.2.1 空間類別與幾何分析 92 3.2.2 屬性設計策略 93 3.2.3 空間關係描述策略 96 3.2.4 品質資訊描述策略 97 3.3 LOD架構設計策略分析 99 3.3.1 共同核心架構 99 3.3.2 三維建物主題架構 102 3.3.3 三維道路主題架構 127 第四章 三維地理圖徵之標準化描述架構設計 145 4.1 城市地理標記語言(CityGML)特性分析 145 4.1.1 發展歷史與簡介 145 4.1.2 CityGML基本概念與特色 147 4.2 三維自我描述地理圖徵架構 159 4.2.1 空間特性描述類別 166 4.2.2 空間關係描述機制 174 4.2.3 品質資訊描述架構 187 4.2.4 可用性描述架構 204 4.2.5 主題語意物件設計 210 第五章 三維自我描述地理圖徵之應用與分析 213 5.1 三維地理圖徵建置 213 5.1.1 實驗區簡介 213 5.1.2 三維建物 216 5.1.3 三維道路 225 5.2 網路三維圖臺系統架構 235 5.2.1 開發架構 235 5.2.2 三維地理圖徵資料庫 239 5.3 應用實例分析 243 5.3.1 單一圖徵描述內容 243 5.3.2 多重表示圖徵之連結 248 5.3.3 多重版本及時間資訊圖徵之連結 255 5.3.4 相異主題圖徵之整合 261 5.3.5 跨域資訊之連結 271 5.3.6 可用性分析 278 第六章 結論及未來展望 302 6.1 結論 302 6.2 未來展望 303 參考文獻 305

    Abdulhafedh, A. (2019). Design of superelevation of highway curves: an overview and distribution methods. Journal of City and Development, 1(1), 35-40.
    Abdul-Rahman, A., & Pilouk, M. (2007). Spatial data modelling for 3D GIS. Springer Science & Business Media.
    Al-Ali, A. R., Zualkernan, I., & Aloul, F. (2010). A mobile GPRS-sensors array for air pollution monitoring. IEEE Sensors Journal, 10(10), 1666-1671.
    Arayici, Y., Onyenobi, T., & Egbu, C. (2012). Building information modelling (BIM) for facilities management (FM): The MediaCity case study approach. International Journal of 3-D Information Modeling (IJ3DIM), 1(1), 55-73.
    Arikawa, M., Amano, A., Maeda, K., Aibara, R., Shimojo, S., Nakamura, Y., & Terauchi, M. (1996). Dynamic LoD for QoS management in the next generation VRML. In Proceedings of the Third IEEE International Conference on Multimedia Computing and Systems (pp. 24-27). IEEE.
    Ariza-López, F. J., Rodríguez-Avi, J., Reinoso-Gordo, J. F., & Ariza-López, Í. A. (2019). Quality Control of “As Built” BIM Datasets Using the ISO 19157 Framework and a Multiple Hypothesis Testing Method Based on Proportions. ISPRS International Journal of Geo-Information, 8(12), 569.
    Ariza-López, F. J., González, P. B., Pau, J. M., Torres, A. Z., Pascual, A. F. R., Vergara, G. M., & Balboa, J. L. G. (2020). Geospatial data quality (ISO 19157-1): evolve or perish. Revista Cartográfica, (100), 129-154.
    Aydinoglu, A. C. (2016). Modelling, encoding and transforming of open geographic data to examine interoperability between GIS applications. Geocarto international, 31(4), 446-461.
    Bayat, H., Delavar, M. R., Barghi, W., EslamiNezhad, S. A., Hanachi, P., & Zlatanova, S. (2020). Modeling of emergency evacuation in building fire. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 321-327.
    Becker, T., Nagel, C., & Kolbe, T. H. (2013). Semantic 3D modeling of multi-utility networks in cities for analysis and 3D visualization. In Progress and New Trends in 3D Geoinformation Sciences (pp. 41-62). Springer, Berlin, Heidelberg.
    Beil, C., & Kolbe, T. H. (2017). CityGML and the streets of New York-A proposal for detailed street space modelling. In Proceedings of the 12th International 3D GeoInfo Conference 2017 (pp. 9-16).
    Beil, C., Ruhdorfer, R., Coduro, T., & Kolbe, T. H. (2020). Detailed Streetspace Modelling for Multiple Applications: Discussions on the Proposed CityGML 3.0 Transportation Model. ISPRS International Journal of Geo-Information, 9(10), 603.
    Beil, C., Kutzner, T., Schwab, B., Willenborg, B., Gawronski, A., & Kolbe, T. H. (2021). INTEGRATION OF 3D POINT CLOUDS WITH SEMANTIC 3D CITY MODELS–PROVIDING SEMANTIC INFORMATION BEYOND CLASSIFICATION. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 8, 105-112.
    Benner, J., Geiger, A., Gröger, G., Häfele, K. H., & Löwner, M. O. (2013). Enhanced LOD concepts for virtual 3D city models. In ISPRS annals of the photogrammetry, remote sensing and spatial information sciences. Proceedings of the ISPRS 8th 3D GeoInfo conference & WG II/2 workshop pp. 51-61.
    Benner, J. (2014). SIG3D proposal for a revised CityGML LoD concept. Retrieved from https://github.com/opengeospatial/CityGML-3.0CM/blob/master/Archive/WP%2003%20Resources/Meetings/2nd/CityGML_LoDConcept_SIG3D.pdf.
    Betaille, D., Miquel, S., Godan, F., & Peyret, F. (2015). 3d-city-model-aided gnss accurate positioning with integrity provision using simplified geometry of buildings. In European Navigation Conference 2015 (p. 6p).
    Betz, M., & Coors, V. (2021). An Application Domain Extension for Storing Validation Results of Citygml Structures. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 8, 11-16.
    Bian, L. (2007). Object-oriented representation of environmental phenomena: Is everything best represented as an object?. Annals of the Association of American Geographers, 97(2), 267-281.
    Biljecki, F. (2013). The concept of level of detail in 3D city models. PhD Research Proposal, TU Delft.
    Biljecki, F., Zhao, J., Stoter, J. E., & Ledoux, H. (2013). Revisiting the concept level of detail in 3D city modelling. In 8th 3DGeoInfo Conference & WG II/2 Workshop, Istanbul, Turkey, 27–29 November 2013, ISPRS Archives Volume II-2/W1. ISPRS.
    Biljecki, F., Ledoux, H., Stoter, J., & Zhao, J. (2014). Formalisation of the level of detail in 3D city modelling. Computers, environment and urban systems, 48, 1-15.
    Biljecki, F., Ledoux, H., & Stoter, J. (2016). An improved LOD specification for 3D building models. Computers, Environment and Urban Systems, 59, 25-37.
    Biljecki, F., Kumar, K., & Nagel, C. (2018). CityGML application domain extension (ADE): overview of developments. Open Geospatial Data, Software and Standards, 3(1), 1-17.
    Biljecki, F., & Tauscher, H. (2019). QUALITY OF BIM–GIS CONVERSION. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 4.
    Bittner, K., & Korner, M. (2018). Automatic large-scale 3d building shape refinement using conditional generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 1887-1889).
    Bizjak, M., Žalik, B., & Lukač, N. (2021). Parameter-Free Half-Spaces Based 3D Building Reconstruction Using Ground and Segmented Building Points from Airborne LiDAR Data with 2D Outlines. Remote Sensing, 13(21), 4430.
    BLOM. (2015). Blom Aerofilms Limited. EuroSDR Workshop.
    Boersma, F. (2019). Modelling different levels of detail of roads and intersections in 3D city models.
    Bonczak, B., & Kontokosta, C. E. (2019). Large-scale parameterization of 3D building morphology in complex urban landscapes using aerial LiDAR and city administrative data. Computers, Environment and Urban Systems, 73, 126-142.
    Brutzman, D., & Daly, L. (2010). X3D: extensible 3D graphics for Web authors. Elsevier.
    Buyukdemircioglu, M., & Kocaman, S. (2020). Reconstruction and efficient visualization of heterogeneous 3D city models. Remote Sensing, 12(13), 2128.
    Carey, R., & Bell, G. (1997). The annotated VRML 2.0 reference manual. Addison-Wesley Longman Ltd.
    Chang, K. H. (2016). e-Design: computer-aided engineering design. Academic Press.
    Chaturvedi, K., & Kolbe, T. H. (2017). Future City Pilot 1 Engineering Report. Lehrstuhl für Geoinformatik.
    Chaturvedi, K., Smyth, C. S., Gesquière, G., Kutzner, T., & Kolbe, T. H. (2017). Managing versions and history within semantic 3D city models for the next generation of CityGML. In Advances in 3D geoinformation (pp. 191-206). Springer, Cham.
    Chaturvedi, K., Willenborg, B., Sindram, M., & Kolbe, T. H. (2017). Solar potential analysis and integration of the time-dependent simulation results for semantic 3D city models using dynamizers. In Proceedings of the 12th International 3D GeoInfo Conference 2017 (pp. 25-32).
    Chaturvedi, K. (2021). Integration and Management of Time-dependent Properties with Semantic 3D City Models (Doctoral dissertation, Technische Universität München).
    Chen, J., & Clarke, K. C. (2017). Modeling standards and file formats for indoor mapping. In International Conference on Geographical Information Systems Theory, Applications and Management (Vol. 2, pp. 268-275). SciTePress.
    Clark, J. H. (1976). Hierarchical geometric models for visible surface algorithms. Communications of the ACM, 19(10), 547-554.
    Clementini, E., Di Felice, P., & Van Oosterom, P. (1993). A small set of formal topological relationships suitable for end-user interaction. In International Symposium on Spatial Databases (pp. 277-295). Springer, Berlin, Heidelberg.
    Coors, V., & Flick, S. (1998). Integrating Levels of Detail in a Web-based 3D-GIS. In Proceedings of the 6th ACM international symposium on Advances in geographic information systems (pp. 40-45).
    Coors, V. (2003). 3D-GIS in networking environments. Computers, Environment and Urban Systems, 27(4), 345-357.
    Dai, W., Yang, B., Dong, Z., & Shaker, A. (2018). A new method for 3D individual tree extraction using multispectral airborne LiDAR point clouds. ISPRS journal of photogrammetry and remote sensing, 144, 400-411.
    Dembski, F., Wössner, U., Letzgus, M., Ruddat, M., & Yamu, C. (2020). Urban digital twins for smart cities and citizens: The case study of Herrenberg, Germany. Sustainability, 12(6), 2307.
    Deng, T., Zhang, K., & Shen, Z. J. M. (2021). A systematic review of a digital twin city: A new pattern of urban governance toward smart cities. Journal of Management Science and Engineering, 6(2), 125-134.
    Döllner, J. (2020). Geospatial artificial intelligence: Potentials of machine learning for 3d point clouds and geospatial digital twins. PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 88(1), 15-24.
    Dübel, S., Röhlig, M., Schumann, H., & Trapp, M. (2014). 2D and 3D presentation of spatial data: A systematic review. In 2014 IEEE VIS international workshop on 3DVis (3DVis) (pp. 11-18). IEEE.
    Egenhofer, M. J., & Franzosa, R. D. (1991). Point-set topological spatial relations. International Journal of Geographical Information System, 5(2), 161-174.
    Elwannas, R. (2011). 3D GIS: It’sa Brave New World. FIG Working Week, Marrakech, 9.
    EuroSDR. (2022). DIGITAL TWINS FOR NATIONAL MAPPING AND CADASTRAL AGENCIES AND OTHER GOVERNMENTAL ORGANISATIONS. Retrieved from http://www.eurosdr.net/workshops/digital-twins-nmcas
    Ford, D. N., & Wolf, C. M. (2020). Smart cities with digital twin systems for disaster management. Journal of management in engineering, 36(4), 04020027.
    Frieder, G., Gordon, D., & Reynolds, R. (1985). Back-to-front display of voxel based objects. IEEE Computer Graphics and Applications, 5(01), 52-60.
    Gobeawan, L., Lin, E. S., Tandon, A., Yee, A. T. K., Khoo, V. H. S., Teo, S. N., & Poto, M. T. (2018). MODELING TREES FOR VIRTUAL SINGAPORE: FROM DATA ACQUISITION TO CITYGML MODELS. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 42.
    Gomes, A. J., & Teixeira, J. G. (1991). Form feature modelling in a hybrid CSG/BRep scheme. Computers & graphics, 15(2), 217-229.
    Grieves, M. (2014). Digital twin: manufacturing excellence through virtual factory replication. White paper, 1, 1-7.
    Gröger, G., Benner, J., Dörschlag, D., Drees, R., Gruber, U., Leinemann, K., & Löwner, M. O. (2005). Das interoperable 3D-Stadtmodell der SIG 3D. Zeitschrift für Vermessungswesen, 130(6), 343-353.
    Haala, N., & Brenner, C. (1999). Laser Data for Virtual Landscape Generation.
    Hájek, P., Jedlička, K., Vichrová, M., & Fiala, R. (2013). Conceptual approach of information rich 3D model about the Terezín Memorial. Geoinformatics FCE CTU, 11, 49-62.
    Haliburton, J., Clayton, M., Ozener, O., & Francisco Farias, W. J. (2011). Parametric Modeling and BIM: Innovative Design Education for Integrated Building Practices.
    He, S. (2012). Production and Visualization of Levels of Detail for 3D City Models.
    Heok, T. K., & Daman, D. (2004). A review on level of detail. In Proceedings. International Conference on Computer Graphics, Imaging and Visualization, 2004. CGIV 2004. (pp. 70-75). IEEE.
    Herbert, G., & Chen, X. (2015). A comparison of usefulness of 2D and 3D representations of urban planning. Cartography and Geographic Information Science, 42(1), 22-32.
    Hong, J. H., & Su, Y. T. (2016). VISA: AN AUTOMATIC AWARE AND VISUAL AIDS MECHANISM FOR IMPROVING THE CORRECT USE OF GEOSPATIAL DATA. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 41.
    Hong, J. H., & Tsai, C. Y. (2020). Using 3D webgis to support the disaster simulation, management and analysis–Examples of Tsunami and flood. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 44, 43-50.
    Hsu, L. T., Gu, Y., & Kamijo, S. (2016). 3D building model-based pedestrian positioning method using GPS/GLONASS/QZSS and its reliability calculation. GPS solutions, 20(3), 413-428.
    IBM. (2022). How does a digital twin work? Retrieved from https://www.ibm.com/topics/what-is-a-digital-twin.
    Ilci, V., & Toth, C. (2020). High definition 3D map creation using GNSS/IMU/LiDAR sensor integration to support autonomous vehicle navigation. Sensors, 20(3), 899.
    Isikdag, U. (2014). Innovations in 3D geo-information sciences. Springer.
    ISO. (2004). ISO 8601 DATE AND TIME FORMAT.
    ISO. (2004). ISO/IEC GUIDE 2 Standardization and related activities — General vocabulary.
    ISO. (2007). ISO19111 Geographic information – Spatial Referencing by Coordinates.
    ISO. (2013). ISO19157 Geographic information – Data Quality.
    ISO. (2018). ISO16739-1:2018 Industry Foundation Classes (IFC) for data sharing in the construction and facility management industries — Part 1: Data schema.
    ISO. (2019). ISO19107:2019 Geographic information – Spatial schema.
    ISO/PAS. (2012). ISO/PAS 17506:2012 Industrial automation systems and integration - COLLADA digital asset schema specification for 3D visualization of industrial data.
    Jjumba, A., & Dragićević, S. (2016). Spatial indices for measuring three-dimensional patterns in a voxel-based space. Journal of Geographical Systems, 18(3), 183-204.
    Jovanović, D., Milovanov, S., Ruskovski, I., Govedarica, M., Sladić, D., Radulović, A., & Pajić, V. (2020). Building virtual 3D city model for Smart Cities applications: A case study on campus area of the University of Novi Sad. ISPRS International Journal of Geo-Information, 9(8), 476.
    Kalantari, M., Syahrudin, S., Rajabifard, A., Subagyo, H., & Hubbard, H. (2020). Spatial Metadata Usability Evaluation. ISPRS International Journal of Geo-Information, 9(7), 463.
    Kavisha, K., Ledoux, H., Commandeur, T. J. F., Stoter, J. E., & Kavisha, K. (2017, October). Modeling urban noise in CityGML ADE: Case of the Netherlands. In Proceedings of the 12th 3D Geoinfo Conference, Melbourne, Australia (pp. 26-27).
    Kehrer, J. (2011). Interactive visual analysis of multi-faceted scientific data.
    Kemec, S., Zlatanova, S., & Duzgun, S. (2012). A new LoD definition hierarchy for 3D city models used for natural disaster risk communication tool. In Proceedings of the 4th International Conference on Cartography & GIS, Volume 2, Albena, June 2012, pp. 17-28. International Cartographic Association.
    Khalili, A., & Chua, D. H. (2015). IFC-based graph data model for topological queries on building elements. Journal of Computing in Civil Engineering, 29(3), 04014046.
    Kolbe, T. H. (2009). Representing and exchanging 3D city models with CityGML. In 3D geo-information sciences (pp. 15-31). Springer, Berlin, Heidelberg.
    Konde, A., Tauscher, H., Biljecki, F., & Crawford, J. (2018). FLOOR PLANS IN CITYGML. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 4.
    Köninger, A., & Bartel, S. (1998). 3D-GIS for urban purposes. Geoinformatica, 2(1), 79-103.
    Koukofikis, A., Coors, V., & Gutbell, R. (2018). INTEROPERABLE VISUALIZATION OF 3D CITY MODELS USING OGC'S STANDARD 3D PORTRAYAL SERVICE. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 4(4).
    Krämer, M., Gutbell, R., Würz, H. M., & Weil, J. (2020). Scalable processing of massive geodata in the cloud: generating a level-of-detail structure optimized for web visualization. AGILE: GIScience Series, 1, 1-20.
    Krämer, M., Haist, J., & Reitz, T. (2007). Methods for Spatial Data Quality of 3D City Models. In Eurographics Italian chapter conference (pp. 167-172).
    Kubler, S., Robert, J., Neumaier, S., Umbrich, J., & Le Traon, Y. (2018). Comparison of metadata quality in open data portals using the Analytic Hierarchy Process. Government Information Quarterly, 35(1), 13-29.
    Kutzner, T., Chaturvedi, K., & Kolbe, T. H. (2020). CityGML 3.0: New functions open up new applications. PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 88(1), 43-61.
    Kweon, I. S., & Kanade, T. (1994). Extracting topographic terrain features from elevation maps. CVGIP: image understanding, 59(2), 171-182.
    Labetski, A., Kumar, K., Ledoux, H., & Stoter, J. (2018). A metadata ADE for CityGML. Open Geospatial Data, Software and Standards, 3(1), 1-16.
    Lakoff, G., & Johnson, M. (1980). Metaphors we live by. University of Chicago press.
    Laurini, R., & Thompson, D. (1992). Fundamentals of spatial information systems (Vol. 37). Academic press.
    Lavoué, G., Chevalier, L., & Dupont, F. (2013). Streaming compressed 3D data on the web using JavaScript and WebGL. In Proceedings of the 18th international conference on 3D web technology (pp. 19-27).
    Ledoux, H., Ohori, K. A., Kumar, K., Dukai, B., Labetski, A., & Vitalis, S. (2019). CityJSON: A compact and easy-to-use encoding of the CityGML data model. Open Geospatial Data, Software and Standards, 4(1), 1-12.
    Lepore, M. (2017). The right to the sun in the urban design. VITRUVIO-International Journal of Architectural Technology and Sustainability, 2(1), 25-43.
    Li, L., Luo, F., Zhu, H., Ying, S., & Zhao, Z. (2016). A two-level topological model for 3D features in CityGML. Computers, Environment and Urban Systems, 59, 11-24.
    Li, M., & Stefanakis, E. (2020). Geo-feature modeling uncertainties in discrete global grids: a case study of downtown Calgary, Canada. Geomatica, 74(4), 175-195.
    Li, R. (1994). Data structures and application issues in 3-D geographic information systems. Geomatica, 48(3), 209-224.
    Liu, C., Shi, H., Lv, Z., & Deng, Z. (2012). Study on the Coordinate Reference Frame of the Indoor/Outdoor Seamless Positioning System. In China Satellite Navigation Conference (CSNC) 2012 Proceedings (pp. 653-660). Springer, Berlin, Heidelberg.
    Löwner, M. O., Benner, J., Gröger, G., & Häfele, K. H. (2013). New concepts for structuring 3D city models–an extended level of detail concept for CityGML buildings. In International Conference on Computational Science and Its Applications (pp. 466-480). Springer, Berlin, Heidelberg.
    Löwner, M. O., & Gröger, G. (2016). Evaluation criteria for recent LoD proposals for City-GML buildings. Photogrammetrie-Fernerkundung-Geoinformation, 31-43.
    Löwner, M. O., Gröger, G., Benner, J., Biljecki, F., & Nagel, C. (2016). PROPOSAL FOR A NEW LOD AND MULTI-REPRESENTATION CONCEPT FOR CITYGML. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 4.
    Lu, M., Chen, M., Wang, X., Min, J., & Liu, A. (2017). A spatial lattice model applied for meteorological visualization and analysis. ISPRS International Journal of Geo-Information, 6(3), 77
    Luebke, D., Reddy, M., Cohen, J. D., Varshney, A., Watson, B., & Huebner, R. (2003). Level of detail for 3D graphics. Morgan Kaufmann.
    Luo, H., Li, L., & Chen, K. (2022). Parametric modeling for detailed typesetting and deviation correction in shield tunneling construction. Automation in Construction, 134, 104052.
    Maisonneuve, N., Stevens, M., Niessen, M. E., Hanappe, P., & Steels, L. (2009). Citizen noise pollution monitoring.
    Malinowski, E., & Zimányi, E. (2005). Spatial hierarchies and topological relationships in the spatial MultiDimER model. In British National Conference on Databases (pp. 17-28). Springer, Berlin, Heidelberg.
    Mäntylä, M. (1987). An introduction to solid modeling. Computer Science Press, Inc..
    Mat, R. C., Shariff, A. R. M., Zulkifli, A. N., Rahim, M. S. M., & Mahayudin, M. H. (2014). Using game engine for 3D terrain visualisation of GIS data: A review. In IOP Conference Series: Earth and Environmental Science (Vol. 20, No. 1, p. 012037). IOP Publishing.
    McGlinn, K., Wagner, A., Pauwels, P., Bonsma, P., Kelly, P., & O’Sullivan, D. (2019). Interlinking geospatial and building geometry with existing and developing standards on the web. Automation in Construction, 103, 235-250.
    McHenry, K., & Bajcsy, P. (2008). An overview of 3d data content, file formats and viewers. National Center for Supercomputing Applications, 1205, 22.
    Midtbo, T. (1993). Spatial modelling by Delaunay networks of two and three dimensions. Dr. Ing. Thesis, Norwegian Institute of Technology, University of Trondheim, 71-80.
    Molenaar, M. (1990). A formal data structure for three-dimensional vector maps. In Proc. EGIS'90 Amsterdam Vol. 2 (1990) 770-781. Ook: Proc. Commission III ISPRS, Wuhan, PR China (1990) 535-550. Ook: Proc. 4th Int. Symp. Spatial data handling, Zürich, Switzerland Vol. 2 (pp. 830-843).
    Moradi, M. (2020). Evaluating the quality of OSM roads and buildings in the Québec Province.
    Moser, J., Albrecht, F., & Kosar, B. (2010). Beyond visualisation–3D GIS analyses for virtual city models. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(4), W15.
    Murtiyoso, A., Veriandi, M., Suwardhi, D., Soeksmantono, B., & Harto, A. B. (2020). Automatic Workflow for Roof Extraction and Generation of 3D CityGML Models from Low-Cost UAV Image-Derived Point Clouds. ISPRS International Journal of Geo-Information, 9(12), 743.
    Nagel, C., Stadler, A., & Kolbe, T. H. (2009). Conceptual requirements for the automatic reconstruction of building information models from uninterpreted 3D models. In Proceedings of the Academic Track of the Geoweb 2009-3D Cityscapes Conference in Vancouver, Canada, 27-31 July 2009.
    Nagel, C. (2014). Proposal for a revision of the CityGML LOD concept. – Presentation at the 5th Meeting of OGC Working Package 3 for the revision of the LoD concept for CityGML 3.0, 20.10.2014, https://github.com/opengeospatial/CityGML- 3.0/blob/master/WP%2003%20Resources/Meetings/1st/WP03_ 2014_07_09_Nagel_Proposal_for_a_Revision-of-the-LOD- Concept.pdf .
    Neuville, R., Pouliot, J., Poux, F., & Billen, R. (2019). 3D Viewpoint management and navigation in urban planning: Application to the exploratory phase. Remote Sensing, 11(3), 236.
    Nguyen, S. H. and Kolbe, T. H. (2021)MODELLING CHANGES, STAKEHOLDERS AND THEIR RELATIONS IN SEMANTIC 3D CITY MODELS, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., VIII-4/W2-2021, 137–144.
    Noardo, F., Krijnen, T., Arroyo Ohori, K., Biljecki, F., Ellul, C., Harrie, L., ... & Stoter, J. (2021). Reference study of IFC software support: The GeoBIM benchmark 2019—Part I. Transactions in GIS, 25(2), 805-841.
    Nogueras-Iso, J., Lacasta, J., Ureña-Cámara, M. A., & Ariza-López, F. J. (2021). Quality of Metadata in Open Data Portals. IEEE Access, 9, 60364-60382.
    Nouvel, R., Kaden, R., Bahu, J. M., Kaempf, J., Cipriano, P., Lauster, M., & Casper, E. (2015). Genesis of the citygml energy ADE. In Proceedings of International Conference CISBAT 2015 on Future Buildings and Districts Sustainability from Nano to Urban Scale (pp. 931-936).
    Nouvel, R., Zirak, M., Dastageeri, H., Coors, V., & Eicker, U. (2014). Urban energy analysis based on 3D city model for national scale applications. In IBPSA Germany conference (Vol. 8, pp. 83-90).
    OGC. (2007). OpenGIS ® Geography Markup Language (GML) Encoding Standard.
    OGC. (2008). OpenGIS® City Geography Markup Language (CityGML) Encoding Standard.
    OGC. (2012). OGC City Geography Markup Language (CityGML) Encoding Standard.
    OGC. (2015). OGC KML 2.3.
    OGC. (2018). OGC Testbed-13: Data Quality Specification Engineering Report.
    OGC. (2019). 3D Tiles Specification 1.0.
    OGC. (2020). IndoorGML 1.1.
    OGC. (2020). OGC Indexed 3D Scene Layer and Scene Layer Package Format Specification Version 1.1.
    OGC. (2021). OGC City Geography Markup Language (CityGML) Part 1: Conceptual Model Standard.
    OGC. (2021). CityJSON Community Standard 1.0.
    OGC. (2022). OGC City Geography Markup Language (CityGML) Part 2: GML Encoding Standard.
    Ohori, K. A., Biljecki, F., Diakité, A., Krijnen, T., Ledoux, H., & Stoter, J. (2017). Towards an integration of GIS and BIM data: What are the geometric and topological issues. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 4(W5), 1-8.
    Oracle. (2012). International Language Environment Guide.
    Osborn, W., & Hinze, A. (2007). Issues in location-based indexing for co-operating mobile information systems. In OTM Confederated International Conferences" On the Move to Meaningful Internet Systems" (pp. 226-235). Springer, Berlin, Heidelberg.
    Palliwal, A., Song, S., Tan, H. T. W., & Biljecki, F. (2021). 3D city models for urban farming site identification in buildings. Computers, Environment and Urban Systems, 86, 101584.
    Paß, M. (2021). The New Skyline of Berlin: A 3D GIS shadow and visibility analysis at the Alexanderplatz.
    Paviot, T., Plesch, A., Sattler, L., & Lamouri, S. (2020). STEP and IFC export to X3D. In The 25th International Conference on 3D Web Technology (pp. 1-13).
    Petrie, G., & Kennie, T. J. M. (1987). Terrain modelling in surveying and civil engineering. Computer-aided design, 19(4), 171-187.
    Pilouk, M. (1996). Integrated modelling for 3D GIS. ITC.
    Ross, L., Bolling, J., Döllner, J., & Kleinschmit, B. (2009). Enhancing 3D city models with heterogeneous spatial information: Towards 3D land information systems. In Advances in GIScience (pp. 113-133). Springer, Berlin, Heidelberg.
    Ruohomäki, T., Airaksinen, E., Huuska, P., Kesäniemi, O., Martikka, M., & Suomisto, J. (2018). Smart city platform enabling digital twin. In 2018 International Conference on Intelligent Systems (IS) (pp. 155-161). IEEE.
    Salim, M. J. (2017). 3D spatial information intended for SDI: a literature review, problem and evaluation. Journal of Geographic Information System, 9(05), 535.
    Schilcher, M., Roschlaub, R., & Guo, Z. (1998). Vom 2D-GIS zum 3D-Stadtmodell durch Kombination von GIS-, CAD-und Animationstechniken. Proceedings ACS, 98, 16.
    Seto, T., Sekimoto, Y., Asahi, K., & Endo, T. (2020). Constructing a digital city on a web-3D platform: simultaneous and consistent generation of metadata and tile data from a multi-source raw dataset. In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities, pp. 1-9
    Shi, W., Yang, B., & Li, Q. (2003). An object-oriented data model for complex objects in three-dimensional geographical information systems. International Journal of Geographical Information Science, 17(5), 411-430.
    Shoaib Khan, M., Kim, J., Park, S., Lee, S., & Seo, J. (2021). Methodology for Voxel-Based Earthwork Modeling. Journal of Construction Engineering and Management, 147(10), 04021111.
    Smith, H. (2020). Geographic vs Projected Coordinate Systems. Retrieved from https://www.esri.com/arcgis-blog/products/arcgis-pro/mapping/gcs_vs_pcs/
    Stoter, J. E., & Zlatanova, S. (2003). 3D GIS, where are we standing?. In ISPRS Joint Workshop on'Spatial, Temporal and multi-dimensional data modelling and analysis', Québec, October, 2003.
    Stoter, J. E. (2004). 3D Cadastre.
    Stoter, J., Vallet, B., Lithen, T., Pla, M., Wozniak, P., Kellenberger, T., ... & Ledoux, H. (2016). STATE-OF-THE-ART OF 3D NATIONAL MAPPING IN 2016. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 41.
    Sulistyah, U. D., & Hong, J. H. (2019). THE USE OF 3D BUILDING DATA FOR DISASTER MANAGEMENT: A 3D SDI PERSPECTIVE. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences.
    Tang, L., Li, L., Ying, S., & Lei, Y. (2018). A full level-of-detail specification for 3D building models combining indoor and outdoor scenes. ISPRS International Journal of Geo-Information, 7(11), 419.
    Tao, F., Zhang, H., Liu, A., & Nee, A. Y. (2018). Digital twin in industry: State-of-the-art. IEEE Transactions on Industrial Informatics, 15(4), 2405-2415.
    Teo, T. A., & Cho, K. H. (2016). BIM-oriented indoor network model for indoor and outdoor combined route planning. Advanced Engineering Informatics, 30(3), 268-282.
    Thiemann, F. (2004). 3D-Gebäude-Generalisierung. In: Theorie 2003 - Kartographische Bausteine Band 26. Koch, W.-G. (Ed.), Dresden 2004. 52-58.
    Uggla, G., & Horemuz, M. (2018). Georeferencing methods for IFC. In 2018 Baltic Geodetic Congress (BGC Geomatics) (pp. 207-211). IEEE.
    Ujang, U., Azri, S., Zahir, M., Abdul Rahman, A., & Choon, T. L. (2018). URBAN HEAT ISLAND MICRO-MAPPING VIA 3D CITY MODEL. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences.
    van Oosterom, P., & Stoter, J. (2010). 5D data modelling: full integration of 2D/3D space, time and scale dimensions. In International Conference on Geographic Information Science (pp. 310-324). Springer, Berlin, Heidelberg.
    Vitalis, S., Arroyo Ohori, K., & Stoter, J. (2019). Incorporating topological representation in 3D city models. ISPRS International Journal of Geo-Information, 8(8), 347.
    Volk, R., Stengel, J., & Schultmann, F. (2014). Building Information Modeling (BIM) for existing buildings—Literature review and future needs. Automation in construction, 38, 109-127.
    VU.CITY. (2022). https://www.vu.city/
    Wang, C., Hou, J., Miller, D., Brown, I., & Jiang, Y. (2019). Flood risk management in sponge cities: The role of integrated simulation and 3D visualization. International Journal of Disaster Risk Reduction, 39, 101139.
    Wang, L., Xu, Y., Li, Y., & Zhao, Y. (2018). Voxel segmentation-based 3D building detection algorithm for airborne LIDAR data. Plos one, 13(12), e0208996.
    Wang, S., & Tseng, Y. H. (2001). Least-squares Model-image Fitting for Model-based Building Extraction. In Proceedings of the Asia GIS 2001 (pp. 1-8).
    Wang, W. P., & Wang, K. K. (1986). Geometric modeling for swept volume of moving solids. IEEE Computer graphics and Applications, 6(12), 8-17.
    Web3D Consortium. (2004). ISO/IEC 19775: 2004 Extensible 3D (X3D).
    White, G., Zink, A., Codecá, L., & Clarke, S. (2021). A digital twin smart city for citizen feedback. Cities, 110, 103064.
    Whiteside, A. (2009). Definition identifier URNs in OGC namespace. OpenGIS Best Practice document.
    Wu, B., Yu, B., Wu, Q., Yao, S., Zhao, F., Mao, W., & Wu, J. (2017). A graph-based approach for 3D building model reconstruction from airborne LiDAR point clouds. Remote Sensing, 9(1), 92.
    Wu, Q., Xu, K., & Wang, J. (2018). Constructing 3D CSG models from 3D raw point clouds. In Computer Graphics Forum (Vol. 37, No. 5, pp. 221-232).
    Wysocki, O., Xu, Y., & Stilla, U. (2021). Unlocking Point Cloud Potential: Fusing Mls Point Clouds with Semantic 3d Building Models while Considering Uncertainty. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 8, 45-52.
    Xie, Y., Tian, J., & Zhu, X. X. (2020). Linking points with labels in 3D: A review of point cloud semantic segmentation. IEEE Geoscience and Remote Sensing Magazine, 8(4), 38-59.
    Yaagoubi, R., Edwards, G., & Badard, T. (2009). Standards and Spatial Data Infrastructures to help the navigation of blind pedestrian in urban areas. In Urban and Regional Data Management (pp. 151-162). CRC Press.
    Yan, J., Diakité, A. A., & Zlatanova, S. (2019). A generic space definition framework to support seamless indoor/outdoor navigation systems. Transactions in GIS, 23(6), 1273-1295.
    Yan, J., Zlatanova, S., & Diakité, A. (2021). A unified 3D space-based navigation model for seamless navigation in indoor and outdoor. International Journal of Digital Earth, 1-19.
    Yao, Z., Nagel, C., Kunde, F., Hudra, G., Willkomm, P., Donaubauer, A., & Kolbe, T. H. (2018). 3DCityDB-a 3D geodatabase solution for the management, analysis, and visualization of semantic 3D city models based on CityGML. Open Geospatial Data, Software and Standards, 3(1), 1-26.
    Yastikli, N., & Cetin, Z. (2021). Classification of raw LiDAR point cloud using point-based methods with spatial features for 3D building reconstruction. Arabian Journal of Geosciences, 14(3), 1-14.
    Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of things for smart cities. IEEE Internet of Things journal, 1(1), 22-32.
    Zhan, W., Chen, Y., & Chen, J. (2021). 3D Tiles-Based High-Efficiency Visualization Method for Complex BIM Models on the Web. ISPRS International Journal of Geo-Information, 10(7), 476.
    Zhu, J., Wang, X., Chen, M., Wu, P., & Kim, M. J. (2019). Integration of BIM and GIS: IFC geometry transformation to shapefile using enhanced open-source approach. Automation in construction, 106, 102859.
    Zlatanova, S. (2000). 3D GIS for urban development. PhD thesis, ITC, 222.
    Zlatanova, S., Rahman, A. A., & Shi, W. (2004). Topological models and frameworks for 3D spatial objects. Computers & geosciences, 30(4), 419-428.
    Zlatanova, S., Stoter, J., & Isikdag, U. (2012). Standards for exchange and storage of 3D information: Challenges and opportunities for emergency response. In Proceedings of the 4th International Conference on Cartography & GIS, Volume 2, Albena, June 2012, pp. 17-28. International Cartographic Association.
    Zlatanova, S., Yan, J., Wang, Y., Diakité, A., Isikdag, U., Sithole, G., & Barton, J. (2020). Spaces in spatial science and urban applications—state of the art review. ISPRS International Journal of Geo-Information, 9(1), 58.
    內政部. (2013). 高精度及高解析度數值地形模型測製規範(草案).
    內政部. (2019). 108年度三維地形圖資技術發展工作案期末報告.
    內政部. (2020). 水利數值地形資料測製及檢核技術指引(草案).
    內政部國土測繪中心. (2011).建置都會區一千分之ㄧ數值航測地形圖作業工作手冊.
    內政部國土測繪中心. (2018). 臺灣通用電子地圖測製更新作業說明.
    內政部國土測繪中心.(2019). 108年度三維建物模型資料標準制訂規劃採購案工作總報告.
    內政部國土測繪中心.(2019). 108年度建置國家底圖多維度圖資服務平臺採購案工作總報告
    內政部國土測繪中心. (2020). 108及109年度LiDAR技術更新數值地形模型成果檢核與監審工作採購案工作總報告.
    內政部國土測繪中心. (2020). 109年度LOD2三維近似建物模型建置試辦作業採購案工作總報告.
    內政部國土測繪中心. (2020). 109年度三維近似化建物模型更新工作總報告。
    內政部國土測繪中心. (2020). 109年度三維道路模型資料標準制定與鐵路及捷運模型資料標準規劃採購案工作總報告.
    內政部國土測繪中心. (2020). 臺灣通用電子地圖品質查核說明.
    內政部統計處.(2016). 統計區分類系統資料標準.
    內政部營建署.(2021). 都市人本交通道路規劃手冊.
    台灣資通產業標準協會. (2019). 高精地圖製圖作業指引 v2.
    台灣資通產業標準協會. (2020). 高精地圖檢核及驗證指引.
    史天元. (2021). 台灣大地基準參考框架討論. 地籍測量: 中華民國地籍測量學會會刊,39(1),1-16頁.
    江渾欽、馮怡婕. (2012). 地籍資料三維建物流通架構建立之研究. 台灣土地研究,第十五卷,第一期,127-155頁.
    吴立新, 史文中, & Gold, C. (2003). 3DGIS 与 3DGMS 中的空间构模技术. 地理与地理信息科学,第19卷,第1期,5-11頁.
    呂建興、黃金維、藍文浩、王成機、郭重言. (2021). 建置我國垂直基準轉換模式. 第三十九屆測量與空間資訊研討會,10月28-29日,臺灣新北市.
    林信助、林士哲、湯美華、陳世儀、游豐銘、林昌鑑.(2020). 運用區塊建物框細緻化技術精進三維建物模型. 內政部國土測繪中心自行研究報告.
    林信助、林士哲、湯美華、陳世儀、游豐銘、林昌鑑.(2021). 運用區塊建物框細緻化技術精進三維建物模型. 國土測繪與空間資訊,第九卷,第二期,153-177頁.
    陳欣宜. (2013). 以自我描述圖徵觀點探討地形資料之管理與共享. 國立成功大學測量及空間資訊學系碩士論文. doi:10.6844/NCKU.2014.00136.
    陳映竹、李信誼、甘翊萱、Petr Vohnicky、韓仁毓. (2021). 整合三維模型與TMY資訊進行太陽能光電潛力分析. 第三十九屆測量與空間資訊研討會,10月28-29日,臺灣新北市.
    智慧城市3D臺北. (2021). https://3d.taipei/
    經濟部水利署. (2021). 邁向智慧防災與數位治理 六河局持續精進河川監測資訊管理. 水利署電子報,第432期.
    劉正倫、蔡季欣、林昌鑑、湯美華. (2019). 三維國家底圖建置. 國土及公共治理學刊,第七卷。第二期,84-89頁.
    劉軍希、顏淑芬、邱建豪、劉新達. (2021). 桃園市三維管線資料庫正確性提升作業之探討. 土木水利,第四十八卷,第五期,49-53頁.

    無法下載圖示 校內:2027-09-05公開
    校外:2027-09-05公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE