簡易檢索 / 詳目顯示

研究生: 居正宏
Chu, Cheng-Hung
論文名稱: 定向能量沉積技術應用於不鏽鋼316L之數值模型建立與製程參數影響熱分析
Numerical Modeling on Directed Energy Deposition for Stainless Steel 316L and Thermal Analysis of the Effects of Process Parameter
指導教授: 溫昌達
Wen, Chang-Da
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 107
中文關鍵詞: 定向能量沉積技術數值分析雷射功率雷射速率冷卻速率
外文關鍵詞: Directed Energy Deposition, numerical analysis, laser power, laser speed, cooling rate
相關次數: 點閱:95下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在 積 層 製 造 (Additive Manufacturing, AM) 領域中, 定向能量沉積技術(Directed Energy Deposition, DED)使用粉末噴塗(Powder-Fed)的方式加工產品,此技術已廣泛應用在各領域製造各種高自由度外型的零件,但技術方面仍須克服許多挑戰,如產品的機械強度、尺寸精度、製程參數的選擇等。
    本研究利用ANSYS Fluent 數值分析軟體建立三維暫態DED 加工不鏽鋼
    316L 數值模型,由工業技術研究院的DED 機台實驗驗證數值模型,與實驗數據比較證明模擬結果具有準確性。後續探討雷射功率及雷射速率對金屬薄層幾何尺寸影響,並依兩個自定義參數,分別從節省能源及節省製程時間的角度比較各種製程參數組合的優劣,獲取最佳製程參數。最後選用最佳製程參數進行比較基板預熱、金屬粉末預熱及保護氣體預熱對金屬薄層的冷卻速率及幾何尺寸的影響性。
    研究顯示雷射功率為影響金屬薄層高度的重要參數占73.7 %貢獻率,而雷
    射速率相對較小占22.1 %;雷射功率亦為影響金屬薄層寬度的重要參數占68.7%貢獻率,而雷射速率占28.4 %。依兩個自定義參數比較模擬的數據,雷射功率1600 W、雷射速率10 mm/s 最能夠節省能源及製程時間。基板預熱能增加金屬薄層幾何尺寸,但降低基板溫度梯度效果有限;金屬粉末預熱能夠顯著的降低冷卻速率同時也增加金屬薄層的堆疊高度;最後保護氣體預熱無法有效降低冷卻速率也無法增加金屬薄層的幾何尺寸。

    In this study, a numerical model of Directed Energy Deposition (DED) process for stainless steel 316L is developed to investigate the thermal effects of process
    parameter. According to the results, laser power has the major effect on both height and width of the metal thing layer; however laser speed has the minor effect on both
    height and width of the metal thing layer. By Taguchi Methods, analysis shows that laser power has 73.7 % effectiveness on height and 68.7 % on width respectively,
    and laser speed has 22.1 % effectiveness on height and 28.4 % on width. Further, the parameters, laser power 1600 W and laser speed 10 mm/s, are found to suitably reduce manufacturing time and save laser energy.
    To improve DED process, three different preheating methods were implemented to reduce temperature gradient, reduce cooling rate and increase size of the metal thing layer. Preheated substrate has the limited result on reducing temperature gradient, but it can increase both height and width of the metal thing layer. In aerospace applications, the columnar grains dominant products have more creep
    resistance on high temperature. One of the key factor to develop columnar grains is to reduce cooling rate during solidification. Preheated metal powder can not only reduce cooling rate effectively but increase height of the metal thing layer. Because shielding gas is a poor thermal conductor, preheated shielding gas has little effect on
    reducing cooling and size of the metal thing layer.

    摘要 i 誌謝 xi 目錄 xii 表目錄 xvi 圖目錄 xvii 符號表 xxii 第一章 緒論 1 1-1 前言 1 1-1-1 積層製造 1 1-1-2 積層製造技術分類 3 1-1-3 定向性能量沉積技術 5 1-2 文獻回顧 7 1-2-1 DED 數值模擬方法 7 1-2-2 不鏽鋼介紹 10 1-2-3 DED 製程參數對產品品質影響 11 1-3 研究背景及目的 23 1-4 全文架構 25 第二章 基礎理論 26 2-1 雷射基礎理論 26 2-1-1 雷射原理 26 2-1-2 二極體雷射介紹 28 2-1-3 高斯雷射熱源分布 32 2-2 粉末與基板材料性質 38 2-3 金屬固化過程及名詞介紹 42 2-3-1 成核階段 42 2-3-2 成長階段 44 第三章 研究方法 45 3-1 物理模型 45 3-2 熱傳理論 47 3-2-1 統御方程式. 47 3-2-2 初始條件及邊界條件 47 3-2-3 相變化討論與假設 49 3-3 數值模擬流程 52 3-3-1 基板熔池模擬 52 3-3-2 預估金屬薄層幾何尺寸 52 3-3-3 DED 加工技術溫度場模擬 56 3-4 網格及時間步階測試 59 3-4-1 網格測試 59 3-4-2 時間步階測試 62 3-5 實驗驗證 62 3-5-1 溫度場驗證 67 3-5-2 金屬薄層幾何尺寸驗證 67 第四章 結果與討論 73 4-1 金屬薄層幾何尺寸比較 73 4-2 製程參數最佳化分析 80 4-3 基板預熱 84 4-3-1 溫度梯度的影響 84 4-3-2 金屬薄層幾何尺寸的影響 88 4-4 金屬粉末預熱 92 4-4-1 冷卻速率探討 94 4-4-2 金屬薄層幾何尺寸的影響 94 4-5 保護氣體預熱 96 第五章 結論與未來工作 103 5-1 結論 103 5-2 未來工作 104 參考文獻 105

    1. I. Gibson, D. Rosen, and B. Stucker, “Additive
    Manufacturing Technologies 3D Printing, Rapid
    Prototyping, and Direct Digital Manufacturing Second
    Edition,”Springer, 2010.
    2. C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang,
    L.E. Loh, and S.L. Sing,“Review of selective laser
    melting: Materials and applications,” Applied Physics
    Reviews, Vol. 2, 041101, 2015.
    3. G.K. Lewis and E. Schlienger, “Practical considerations
    and capabilities for laser assisted direct metal
    deposition,” Materials & Design, Vol. 21, pp. 417-423,
    2000.
    4. P. Michaleris, “Modeling metal deposition in heat
    transfer analyses of additive
    manufacturing processes,” Finite Elements in Analysis
    and Design, Vol. 86, pp.51-60, 2014.
    5. L. Wang, S. Felicelli, Y. Gooroochurn, P.T. Wang, and
    M.F. Horstemeyer, “Optimization of the LENS® process
    for steady molten pool size,” Materials Science and
    Engineering A, Vol. 474, pp. 148-156, 2008.
    6. R. Ye, J.E. Smugeresky, B. Zheng, Y. Zhou, and E.J.
    Lavernia, “Numerical modeling of the thermal behavior
    during the LENS® process,” Materials Science and
    Engineering A, Vol. 428, pp. 47-53, 2006.
    7. W.F. Smith and J. Hashemi, “Foundations of materials
    science and engineering,” McGraw-Hill, pp. 424-428,
    2007.
    8. 謝之駿, “不銹鋼材料,” 國立中興大學。
    9. M.V. Boniardi and A. Casaroli, “Stainless steels,”
    Lucefin S.p.A., 2014
    10. W.D. Callister and D.G. Rethwisch, “Fundamentals of
    Materials Science and Engineering: An Integrated
    Approach, 4th edition, 2012.
    11. L. Wang and S. Felicelli, “Process Modeling in Laser
    Deposition of Multilayer SS410 Steel,” Journal of
    Manufacturing Science and Engineering, Vol. 129, pp.
    1028-1034, 2007.
    12. P. Peyre, P. Aubry, R. Fabbro, R. Neveu, and A.
    Longuet, “Analytical and numerical modelling of the
    direct metal deposition laser process,” Journal of
    Physics D: Applied Physics, Vol. 41, Number 2, 2008.
    13. J.C. Heigel, P. Michaleris, and E.W. Reutzel, “Thermo-
    mechanical model development and validation of
    directed energy deposition additive manufacturing
    of Ti–6Al–4V,” Additive Manufacturing, Vol. 5, pp. 9-
    19, 2015.
    14. R. Klein, “Laser Welding of Plastics ,” Wiley-VCH,
    2011.
    15. 楊隆昌, “雷射發展的趨勢與應用”, September, 2014.
    16. 張守進、劉醇星、姬梁文, “半導體雷射, 科學發展”, 349,
    January, 2002.
    17. D. Schwartz,“Head and optics innovations key to laser
    cutting growth, ” The Fabricator, April, 2016.
    18. S. Louhenkilpi and F. Imre, “ A lézersugár
    jellemzése,” Anyagtudományi folyamatszimuláció -
    Hőkezelés modellezése, 2011.
    19. “Gaussian Beam Optics,” Available:
    http://www.cvimellesgriot.com/.1919–1928, August 1997.
    20. K.C. Mills,“Recommended values of thermophysical
    properties for selected commercial alloy,” Woodhead
    Publishing, 2002.
    21. D. Hu and R. Kovacevic,“Modelling and measuring the
    thermal behaviour of the molten pool in closed-loop
    controlled laser-based additive manufacturing,”
    Proceedings of the Institution of Mechanical
    Engineers, Part B:Journal ofEngineering Manufacture,
    2003.
    22. L.X. Yang, X.F. Peng, and B.X. Wang,“Numerical
    modeling and experimental investigation on the
    characteristics of molten pool during laser
    processing,” International Journal of Heat and Mass
    Transfer, Vol. 44, Issue 23, pp.4465-4473, 2001.
    23. E. Toyserkani, A. Khajepour, and S. Corbin,“3-D finite
    element modeling of laser cladding by powder
    injection: effects of laser pulse shaping on the
    process,”Optics and Lasers in Engineering, Vol. 41,
    Issue 6, pp. 849–867, 2004.
    24. L. Wang and S. Felicelli,“Analysis of thermal
    phenomena in LENS™ deposition,” Materials Science and
    Engineering: A, Vol. 435–436, pp.625-631, 2006.
    25. 朱紅鈞,“FLUENT 15.0 流場分析實戰指南,” 人民郵電出版社,
    2015.
    26. 隋洪濤, 李鵬飛, 馬世虎, 馬富銀, 胡穎, 人民郵電出版社,
    2013.
    27. Y.A. Cengel,“Heat and Mass Transfer: A Practical
    Approach,” McGraw-Hill, pp.20, 2006.
    28. E.W. Lemmon and R.T. Jacobsen, “ Viscosity and Thermal
    Conductivity Equations for Nitrogen, Oxygen, Argon,
    and Air,” International Journal of Thermophysics, Vol.
    25, pp 21-69, 2004

    下載圖示 校內:2019-07-01公開
    校外:2019-07-01公開
    QR CODE