研究生: |
鍾劍鋒 Chung, Chien-Feng |
---|---|
論文名稱: |
設計與模擬微量樣本聚焦/分離/切換收集在電驅動微流體系統晶片之應用 Design and Numerical Simulation of Electrokinetically Driven Sample Flow with Focusing, Dispensing and Collection in a Microfluidic System |
指導教授: |
楊瑞珍
Yang, Ruey-Jen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 微流體系統 、微機電 、數值模擬 、電滲流 |
外文關鍵詞: | numerical simulation, mems, microfluidic system, electroosmotic flow |
相關次數: | 點閱:69 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要是在電滲流場的理論基礎下,設計一種微流體系統晶片應用於生物晶片系統中的檢測技術,以數值模擬的方式模擬電滲流場在微流體系統的應用,其應用在微量樣本的截取及分配。
模擬電滲流場所使用物理模式包括(i)描述電雙層分布之Poisson-Boltzmann方程式(ii)描述外加電場電位勢分布之Laplace方程式(iii)描述電滲流流場之包含電驅動力的Navier-Stokes方程式。而主要研究重點分為兩項,茲說明如下:
(一)、針對電滲流場在微流體晶片系統中應用於樣本的聚焦、切換、收集所造成進料、截取、分類的設計問題進行探討。
(二)、針對電滲流場中控制電場的設計及現象影響作一綜合的討論及解決方式的研究。
本文的結果可以得知在微流體系統晶片上的應用是可行的,可以提供實作上的參數設計及樣本傳輸過程中可能發生的問題改良,最後希望能藉由微機電製造技術的方式發展自動樣本檢測晶片,其產品可以大幅降低生化檢測分析的成本及效率,讓微系統科學能有效的運用在工程問題改善。
This study presents a novel design delivery finite amount of sample by eletrokinetically-driven flow transport process. The novel design is numerically simulated by the following physical models: (i) the Poisson-Boltzmann equation for electrical double layer (EDL) potential, (ii) the Laplace equation for the externally applied electrostatic field, and (iii) the Navier-Stokes equations modified to account for the electro-kinetic body force. This research consists two main parts; first we present a systematic, the sample approach for focusing and dispensing on a microfluidic system. Second, we present the voltage control on this system, which is used to influence the sample plug leakage and diffusive phenomena during the sample transport process.
The designed microfluidic system can be used to achieve on chip capillary electrophoresis applications. The numerical simulation techniques developed in this work provide a useful tool for parametric studies. We believe that the proposed microfluidic system is a useful micro-total-analysis system and can be applied to a clinical hematology test.
1. Bernhard H.W., Ron L.B., Catherine R.C. “Lab-on-chip for drug development,” Advanced Drug Delivery Review, 55,349-377, 2003
2. Manz, A., Graber, N., Widmer, H. M., “Miniaturized Total Chemical Analysis Systems: A Novel Concept for Chemical Sensing,” Sensors and Actuators, B1, 1990
3. Gravesen, P., Branebjerg, J., Jensen, O., “Microfluidics-a review,” J. Micromech. Microeng,” 3, 168-182, 1993
4. Helene, A., Albert, B., “Microfluidices for cellomics: a review,” Sensors and Actuators B, 315-325, 2003
5. Hunter, R. J., “ Zeta Potential in Colloid Science: Principles and Applications,” Academic Press, New York, 1981
6. Mala, G. M., Li, D., Werner, C., Jacobasch, H. J., Ning, Y. B., “Flow Characteristics of Water Through a Microchannel between Two Parallel Plates with Electrokinetic Effects,” Int. J. Heat and Fluid Flow, 18, 489-496, 1997
7. Yang, C., Li, D., “Electrokinetic Effects on Pressure-Driven Liquid Flows in Rectangular Microchannels,” J. of Colloid and Interface Science, 194, 95-107, 1997
8. Tiselius, A., “A New Apparatus for Electrophoretic Analysis of Colloidal Mixtures,” Trans. Faraday Soc., 33, 524, 1937
9. Burgreen, D., Nakache, F. R., “Electrokinetic Flow in Ultrafine Capillary Slits,” J. Phys. Chem., 68, 1084-1091
10. Rice, C. L., Whitehead, R., “Electrokinetic Flow in a Narrow Cylindrical Capillary,” J. Phys. Chem., 69, 4017-4024, 1965
11. Jorgenson, J. M., Lukacs, K. D.,“Zone Electrophoresis in Open-Tubular Glass Capillaries,” Analytical Chemistry, 53, 1298-1302, 1981
12. Andreev, V. P., Lisin, E. E., “On the Mathematical Model of Capillary Electrophoresis,” Chromatographia, 37, 202-210, 1993
13. Andreev, V. P., Dubrovsky, S. G., Stepanov, Y. V., “Mathematical Modeling of Capillary Electrophoresis in Rectangular Channels,” J. Microcolumn Separations, 443-450, 1997
14. Patankar, N. A., Hu, H. H., “Numerical Simulation of Electroosmotic Flow,” Analytical Chemistry, 70, 1870-1881, 1998
15. Gregor, O., Mark M., et al., “Electrokinetic control of fluid flow in native poly capillary electrophoresis devices,” Electrophoresis, 21, 107-115, 2000
16. Ermakov, S. V., Jacobson, S. C., Ramsey, J. M., “Computer Simulation of Electrokinetic Injection Techniques in Microfluidic Devices,” Analytical Chemistry, 72, 3512-3517, 2000
17. Sinton, D., Ren, L., Xuan, X., Li, D., “Effect of liquid conductivity differences on multi-component sample injection, pumping and stacking in microfluidic chips, ” Lab Chip, 3, 173-179, 2003
18. Jacobson, S. C., Ermakov, S. V., Ramsey, J. M., “Minimizing the Number of Voltage Sources and Fluid Reservoirs for Electrokinetic Valving in Microfluidic Devices”, Analytical Chemistry, 71, 3273-3276, 1999
19. Bharadwaj, R., Santiago, J. G., Mohammadi, B., “Design and optimization of on-chip capillary electrophoresis,” Electrophoresis, 23, 2729-2744, 2002
20. Sinton, D., Ren, L., Li, D., “Visualization and numerical modeling of microfluidic on-chip injection processes,” J. of Colloid and Interface Science, 260, 431-439, 2003
21. Ya, J., Luo, G. A., “Numerical calculation of the electroosmotic flow at the cross region in microfluidic chips,” Electrophoresis, 24, 1242-1252, 2003
22. Yang, R. J., Fu, L. M., Lee, G. B., “Variable Volume Injection Methods Using Electrokinetic Focusing on Microfluidic Chips,” J. of Separation Science, Vol.25, 996-1010, 2002
23. Fu, L. M., Yang, R. J., Lee, G. B., “Electrokinetic Focusing Injection Methods on Microfluidic Devices,” Analytical Chemistry,Vo. 75, 1905-1910, 2003
24. Fu, L. M., Yang, R. J., Lee, G. B., Pan, Y. J., “Multiple Injection Techniques for Microfluidic Sample Handling,” Electrophoresis, Vol. 24, 3026-3032, 2003
25. Lin, C. H, Yang, R. J., Tai, C. H., Lee, J. Y., Fu, L. M., “Double-L Injection Technique for High Performance CE Detection in Microfluidic Chips,” J. of Micromechanics and Microengineering, Vol. 14, 639-646, 2004
26. Fu, L. M., Lin, C. H., “Numerical analysis and Experimental Estimation of a Low-Leakage Injection Technique for Capillary Electrophoresis,” Analytical Chemistry, 75, 5790-5796, 2003
27. Fu, L. M., Yang, R. J., Lin, C. H., Lee, G. B., Pan, Y. J., “Electrokinetically-driven Micro Flow Cytometers with Integrated Optical Waveguides for On-line Cell/Particle Detection,” Analytical Chemical ACTA, 507, 163-169, 2004
28. Ermakov, S.V., Jacobson, S. C., Ramsey, J. M., “Computer Simulations of Electrokinetic Transport in Microfabricated Channel Structures,” Analytical Chemistry, 70, 4494-4504, 1998
29. Arulanandam, S., Li, D., “ Liquid Transport in Rectangular Microchannels by Electroosmotic Pumping,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 161, 89-102, 2000
30. Ren, L., Li, D., “Electroosmotic Flow in Heterogeneous Microchannels,” J. Colloid and Interface Science, 243, 255-261, 2001
31. Yang, C., Li, D., Masliyah, J. H., “Modeling Forced Liquid Convection in Rectangular Microchannels with Electrokinetic Effects,” Int. J. Heat and Mass Transfer, 41, 4229-4249, 1998
32. Hoffmann, K. A., Chiang, S. T., “Computational Fluid Dynamics for Engineers-Volume 1,” Wichita, Kansas, USA, 1993
33. Maynes, D., Webb, B. W., “Fully Developed Electro-Osmotic Heat Transfer in Microchannels,” Int. J. Heat and Mass Transfer, 46, 1359-1369, 2003
34. Hu, L., Harrison, J. D., Masliyah, J. H., “Numerical Model of Electrokinetic Flow for Capillary Electrophoresis,” J. of Colloid and Interface Science, 215, 300-312, 1999
35. Culbertson, C. T., Ramsey, R. S., Ramsey, J. M., “Electroosmotically Induced Hydraulic Pumping on Microchips: Differential Ion Transport,” Analytical Chemistry, 70, 4494-4504, 1998