簡易檢索 / 詳目顯示

研究生: 陳柏光
Chen, Bo-Guang
論文名稱: PDE5抑制劑於離體灌流老鼠肝臟之動態研究
Disposition of PDE5 Inhibitors in the Isolated Perfused Rat Liver
指導教授: 周辰熹
Chou, Chen-Hsi
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床藥學研究所
Institute of Clinical Pharmacy
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 104
中文關鍵詞: P-glycoprotein藥物動力學藥物交互作用PDE5抑制劑
外文關鍵詞: drug-drug interaction, pharmacokinetics, P-glycoprotein, PDE5 inhibitors
相關次數: 點閱:128下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • PDE5抑制劑在臨床上廣泛被用來治療男性勃起功能障礙及肺動脈高壓。PDE5抑制劑在結構上與cGMP相似且其代謝途徑主要是經由肝臟的CYP3A及CYP2C9這兩個酵素,並有活性代謝物的產生。目前對PDE5抑制劑的交互作用研究著重在代謝酵素方面,但在藥物運輸子的研究仍不多。然而,已有研究指出sildenafil對於MRP4、MRP5及OATP有抑制的作用,在臨床文獻指出PDE5抑制劑與ritonavir之交互作用可能與P-gp有關。在本實驗室研究發現,vardenafil在活體鼠膽汁有主動分泌的現象,推論其現象可能經由藥物運輸子調控。因此有關藥物運輸子在PDE5抑制劑於肝臟之動態學與交互作用上的角色值得加以研究。
    本研究目的為使用離體肝臟灌流裝置來觀察PDE5抑制劑的肝臟藥品動態,再進一步藉由sildenafil與各藥品的交互作用討論藥物運輸子所扮演的角色。
    研究結果發現在穩定灌流下sildenafil在離體老鼠肝臟的主動分泌現象遠大於tadalafil及vardenafil,顯示sildeanfil在膽汁排除的趨勢大於tadalafil及vardenafil。因此,使用sildenafil作為探討交互作用之PDE5抑制劑。於離體老鼠肝臟,若給予P-gp、MRP2及OATP抑制劑cyclosporine A(CsA),會顯著減少sildenafil之膽汁排除,而在灌流液的部分則沒有差異;代謝物部分則發現到灌流液隨CsA濃度增加而呈上升的趨勢,而膽汁則隨CsA濃度增加而減少。而在併用OATP、MRP2抑制劑rifampicin(RIF)時sildenafil膽汁排除量有明顯增加。代謝物部分則發現其在膽汁濃度有略微下降的趨勢。併用MRP抑制劑probenecid(PBED)則可發現到sildenafil的灌流液濃度曲線下面積與膽汁排除量是呈現上升的狀況;代謝物部分則發現灌流液代謝物濃度上升,而膽汁代謝物略為下降但不具統計差異。併用P-gp受質amisulpride(AMI)則發現在不論灌流液或膽汁sildenafil與其代謝物在肝臟的動態與灌流CsA者相近。
    本研究之結果可知sildenafil、tadalafil與vardenafil皆有膽汁主動分泌的現象,而藉由交互作用推論sildenafil在體內的動態可能被許多藥物運輸子影響。其運輸似乎與P-gp調控有關,而OATP則影響不大。sildenafil在肝中的運輸似乎與竇狀隙的藥物運輸子有關,但與何種藥物運輸子有關仍須進一步探討。

    Introduction: PDE5 inhibitors are used for the treatment of male erectile dysfunction and pulmonary arterial hypertension. The structures of PDE5 inhibitors are similar to cGMP and they are mainly metabolized by CYP3A and CYP2C9 isozymes in the liver. Currently, the interaction studies of PDE5 inhibitors are focused on the metabolic aspect and none of them has addressed on the transporter interactions. However, recent studies have demonstrated that sildenafil can inhibit the activity of MRP4, MRP5 and OATP. And it has beeen suggested that P-gp, in addition to CYP3A, was responsible for the increase of the concentration of PDE5 inhibitors when concomitant with ritonavir in clinical settings. In our previous study, we found that vardenafil underwent active biliary secretion in rats. Therefore, it is of great interest to investigate the role of drug transporters on the hepatobiliary disposition of PDE5 inhibitors.
    Purpose:The aim of this study was to investigate the hepatic disposition of PDE5 inhibitors, and to explore the role of drug transporters on their hepatobiliary transport in the isolated perfused rat liver.
    Results:All PDE5 inhibitors showed active biliary secretion during single-pass constant perfusion experiments. As the extent of secretion of sildenafil was greater than that of tadalafil and vardenafil, sildenafil was chosen as the model drug to further explore drug interactions of PDE5 inhibitors. Using the recirculated perfused rat liver preparation, the biliary secretion of sildenafil and its metabolite was found to decrease with increasing concentration of concomitant cyclosporine A, an inhibitor of OATP、MRP2、P-gp. When co-administered with rifampicin, an OATP and MRP2 inhibitor, the perfusate concentration of sildenafil increased slightly, yet the cumulative amount excreted in bile of sildenafil was increased appreciably. In the prescence of the MRPs inhibitor probenecid, both the perfusate concentration and the cumulative amount excreted in bile of sildenafil increased significantly. When concomitant with amisulpride, a P-gp substrate, the biliary secretion of sildenafil and its metabolite was found to decrease slightly.
    Conclusion:In this study, we found that all three PDE5 inhibitors underwent active biliary secretion. This study also demonstrated that the disposition of sildenafil was influenced by various inhibitors of membeane transporters. Sildenafil appeared to be a substrate for P-gp, and the role of OATP was limited for hepatic transport of sildenafil. Whether the transporters in sinusolidar membrane are involved in the hepatic disposition of sildenafil or not remains unclear.

    摘要 I Abstract III 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 縮寫表 XII 第一章 緒論 1 第一節 前言 1 第二節 二次訊息傳遞者與磷酸二酯酶 3 一、 生理功能與組織分布 3 二、 臨床應用及研究 6 第三節 PDE5抑制劑的作用機轉 7 第四節 PDE5抑制劑的比較 8 一、 構型差異 8 二、 物化特性 9 三、 對PDE同功酶之選擇性 11 四、 藥動學特性 13 五、 藥效學交互作用 17 六、 藥動學交互作用 18 七、 關於藥物運輸子的交互作用 20 第五節 藥物運輸子簡介 20 一、 藥物運輸子在藥動學上的重要性 20 二、 藥物運輸子的作用與組織分布 21 三、 藥物運輸子與藥動學之關係 32 第六節 PDE5抑制劑關於藥物運輸子的研究 34 第二章 研究目的 35 第一節 PDE5抑制劑於離體灌流老鼠中肝之動態 36 一、 穩定灌流實驗 36 二、 循環灌流實驗 36 第二節 藥品於離體灌流老鼠肝中之交互作用 36 第三章 實驗材料、儀器及方法 37 第一節 實驗材料 37 一、 實驗動物 37 二、 藥品與試劑 37 三、 常用緩衝溶液配方 38 第二節 實驗儀器 39 一、 灌流系統 39 二、 高效液相層析系統 39 三、 繪圖及藥動分析軟體 40 第三節 實驗方法 41 一、 離體肝臟灌流實驗 41 二、 實驗設計 46 三、 藥品定量分析 48 四、 Sildenafil代謝物定性分析 50 五、 數據解析 51 第四章 實驗結果 54 第一節 PDE5抑制劑於離體灌流老鼠肝中之動態 54 一、 穩定灌流實驗 54 二、 循環肝臟灌流實驗 68 三、 Sildenafil之校正曲線 71 第二節 藥品於離體灌流老鼠肝之交互作用 72 一、 循環灌流實驗前後差異之排除 72 二、 Cyclosporine A對sildenafil藥動學之影響 75 三、 Rifampicin對sildenafil藥動學之影響 79 四、 Probenecid對sildenafil藥動學之影響 83 五、 Amisulpride對sildenafil藥動學之影響 86 第五章 討論 89 第一節 PDE5抑制劑結構與藥物運輸子 89 第二節 離體灌流老鼠肝之動態 89 第三節 藥品於離體灌流老鼠肝之交互作用 91 一、 循環灌流實驗前後差異之排除 92 二、 Cyclosporine A對sildenafil藥動學之影響 92 三、 Rifampicin對sildenafil藥動學之影響 94 四、 Probenecid對sildenafil藥動學之影響 95 五、 Amisulpride對sildenafil藥動學之影響 97 第六章 結論 99 參考文獻 100

    Aszalos A (2007) Drug-drug interactions affected by the transporter protein, P-glycoprotein (ABCB1, MDR1) II. Clinical aspects. Drug Discov Today 12:838-843.
    Blount MA, Beasley A, Zoraghi R, Sekhar KR, Bessay EP, Francis SH and Corbin JD (2004) Binding of tritiated sildenafil, tadalafil, or vardenafil to the phosphodiesterase-5 catalytic site displays potency, specificity, heterogeneity, and cGMP stimulation. Mol Pharmacol 66:144-152.
    Briganti A, Salonia A, Gallina A, Sacca A, Montorsi P, Rigatti P and Montorsi F (2005) Drug Insight: oral phosphodiesterase type 5 inhibitors for erectile dysfunction. Nat Clin Pract Urol 2:239-247.
    Carson CC and Lue TF (2005) Phosphodiesterase type 5 inhibitors for erectile dysfunction. BJU Int 96:257-280.
    Cascorbi I (2006) Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacol Ther 112:457-473.
    Chen ZS, Lee K and Kruh GD (2001) Transport of cyclic nucleotides and estradiol 17-beta-D-glucuronide by multidrug resistance protein 4. Resistance to 6-mercaptopurine and 6-thioguanine. J Biol Chem 276:33747-33754.
    Cheng CL, Kang GJ and Chou CH (2007) Development and validation of a high-performance liquid chromatographic method using fluorescence detection for the determination of vardenafil in small volumes of rat plasma and bile. J Chromatogr A 1154:222-229.
    Choudhuri S and Klaassen CD (2006) Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int J Toxicol 25:231-259.
    Constantinides PP and Wasan KM (2007) Lipid formulation strategies for enhancing intestinal transport and absorption of P-glycoprotein (P-gp) substrate drugs: in vitro/in vivo case studies. J Pharm Sci 96:235-248.
    Deters M, Kirchner G, Koal T, Resch K and Kaever V (2004) Everolimus/cyclosporine interactions on bile flow and biliary excretion of bile salts and cholesterol in rats. Dig Dis Sci 49:30-37.
    Diaz-Garcia JM, Evans AM and Rowland M (1992) Application of the axial dispersion model of hepatic drug elimination to the kinetics of diazepam in the isolated perfused rat liver. J Pharmacokinet Biopharm 20:171-193.
    Dobson PD and Kell DB (2008) Carrier-mediated cellular uptake of pharmaceutical drugs: an exception or the rule? Nat Rev Drug Discov 7:205-220.
    Dong H, Osmanova V, Epstein PM and Brocke S (2006) Phosphodiesterase 8 (PDE8) regulates chemotaxis of activated lymphocytes. Biochem Biophys Res Commun 345:713-719.
    Dresser GK, Spence JD and Bailey DG (2000) Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 38:41-57.
    El Ela AA, Hartter S, Schmitt U, Hiemke C, Spahn-Langguth H and Langguth P (2004) Identification of P-glycoprotein substrates and inhibitors among psychoactive compounds--implications for pharmacokinetics of selected substrates. J Pharm Pharmacol 56:967-975.
    Gales BJ and Gales MA (2008) Phosphodiesterase-5 inhibitors for lower urinary tract symptoms in men. Ann Pharmacother 42:111-115.
    Gupta M, Kovar A and Meibohm B (2005) The Clinical Pharmacokinetics of Phosphodiesterase-5 Inhibitors for Erectile Dysfunction. J Clin Pharmacol 45:897-1003.
    Harris A, Kagemann L, Ehrlich R, Ehrlich Y, Lopez CR and Purvin VA (2008) The effect of sildenafil on ocular blood flow. Br J Ophthalmol 92:469-473.
    Honda Y, Ushigome F, Koyabu N, Morimoto S, Shoyama Y, Uchiumi T, Kuwano M, Ohtani H and Sawada Y (2004) Effects of grapefruit juice and orange juice components on P-glycoprotein- and MRP2-mediated drug efflux. Br J Pharmacol 143:856-864.
    Huang S-M (2006) Major Human Transporters, in http://www.fda.gov/cder/drug/drugInteractions/tableSubstrates.htm#PgpTransport.
    Jedlitschky G, Burchell B and Keppler D (2000) The multidrug resistance protein 5 functions as an ATP-dependent export pump for cyclic nucleotides. J Biol Chem 275:30069-30074.
    Jedlitschky G and Keppler D (2002) Transport of leukotriene C4 and structurally related conjugates. Vitam Horm 64:153-184.
    Kageyama M, Namiki H, Fukushima H, Ito Y, Shibata N and Takada K (2005) In vivo effects of cyclosporin A and ketoconazole on the pharmacokinetics of representative substrates for P-glycoprotein and cytochrome P450 (CYP) 3A in rats. Biol Pharm Bull 28:316-322.
    Kloner RA (2005) Pharmacology and drug interaction effects of the phosphodiesterase 5 inhibitors: focus on alpha-blocker interactions. Am J Cardiol 96:42M-46M.
    Konig J, Nies AT, Cui Y, Leier I and Keppler D (1999) Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance. Biochim Biophys Acta 1461:377-394.
    Lau YY, Okochi H, Huang Y and Benet LZ (2006) Multiple transporters affect the disposition of atorvastatin and its two active hydroxy metabolites: application of in vitro and ex situ systems. J Pharmacol Exp Ther 316:762-771.
    Lin CS, Lin G, Xin ZC and Lue TF (2006) Expression, distribution and regulation of phosphodiesterase 5. Curr Pharm Des 12:3439-3457.
    Manzi SF and Shannon M (2005) Drug Interactions—A Review Clin Pediatr Emerg Med 6:93-102.
    Mehrotra N, Gupta M, Kovar A and Meibohm B (2007) The role of pharmacokinetics and pharmacodynamics in phosphodiesterase-5 inhibitor therapy. Int J Impot Res 19:253-264.
    Mehvar R and Chimalakonda AP (2004) Hepatic disposition of cyclosporine A in isolated perfused rat livers. J Pharm Pharm Sci 7:47-54.
    Muirhead GJ, Wilner K, Colburn W, Haug-Pihale G and Rouviex B (2002) The effects of age and renal and hepatic impairment on the pharmacokinetics of sildenafil. Br J Clin Pharmacol 53 Suppl 1:21S-30S.
    Nishida K, Tonegawa C, Kakutani T, Hashida M and Sezaki H (1989) Statistical moment analysis of hepatobiliary transport of phenol red in the perfused rat liver. Pharm Res 6:140-146.
    Omori K and Kotera J (2007) Overview of PDEs and their regulation. Circ Res 100:309-327.
    Qadir M, O'Loughlin KL, Fricke SM, Williamson NA, Greco WR, Minderman H and Baer MR (2005) Cyclosporin A is a broad-spectrum multidrug resistance modulator. Clin Cancer Res 11:2320-2326.
    Reid G, Wielinga P, Zelcer N, De Haas M, Van Deemter L, Wijnholds J, Balzarini J and Borst P (2003) Characterization of the transport of nucleoside analog drugs by the human multidrug resistance proteins MRP4 and MRP5. Mol Pharmacol 63:1094-1103.
    Sager G (2004) Cyclic GMP transporters. Neurochem Int 45:865-873.
    Shitara Y, Itoh T, Sato H, Li AP and Sugiyama Y (2003) Inhibition of transporter-mediated hepatic uptake as a mechanism for drug-drug interaction between cerivastatin and cyclosporin A. J Pharmacol Exp Ther 304:610-616.
    Shitara Y, Sato H and Sugiyama Y (2005) Evaluation of drug-drug interaction in the hepatobiliary and renal transport of drugs. Annu Rev Pharmacol Toxicol 45:689-723.
    Smeets PH, van Aubel RA, Wouterse AC, van den Heuvel JJ and Russel FG (2004) Contribution of multidrug resistance protein 2 (MRP2/ABCC2) to the renal excretion of p-aminohippurate (PAH) and identification of MRP4 (ABCC4) as a novel PAH transporter. J Am Soc Nephrol 15:2828-2835.
    Sparreboom A, van Asperen J, Mayer U, Schinkel AH, Smit JW, Meijer DK, Borst P, Nooijen WJ, Beijnen JH and van Tellingen O (1997) Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Natl Acad Sci U S A 94:2031-2035.
    Sugiura T, Kato Y and Tsuji A (2006) Role of SLC xenobiotic transporters and their regulatory mechanisms PDZ proteins in drug delivery and disposition. J Control Release 116:238-246.
    Treiber A, Schneiter R, Hausler S and Stieger B (2007) Bosentan is a substrate of human OATP1B1 and OATP1B3: inhibition of hepatic uptake as the common mechanism of its interactions with cyclosporin A, rifampicin, and sildenafil. Drug Metab Dispos 35:1400-1407.
    Tsuji A (2006) Impact of transporter-mediated drug absorption, distribution, elimination and drug interactions in antimicrobial chemotherapy. J Infect Chemother 12:241-250.
    Van Bambeke F, Michot JM and Tulkens PM (2003) Antibiotic efflux pumps in eukaryotic cells: occurrence and impact on antibiotic cellular pharmacokinetics, pharmacodynamics and toxicodynamics. J Antimicrob Chemother 51:1067-1077.
    Wacher VJ, Wu CY and Benet LZ (1995) Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol Carcinog 13:129-134.
    Webb DJ, Freestone S, Allen MJ and Muirhead GJ (1999) Sildenafil citrate and blood-pressure-lowering drugs: results of drug interaction studies with an organic nitrate and a calcium antagonist. Am J Cardiol 83:21C-28C.
    Wright PJ (2006) Comparison of phosphodiesterase type 5 (PDE5) inhibitors. Int J Clin Pract 60:967-975.
    XenoTech Drug transporters, in http://www.xenotechllc.com/Contract.Service-DrugTransporters, Lenexa, Kansas 66219.
    Xia CQ, Milton MN and Gan LS (2007) Evaluation of drug-transporter interactions using in vitro and in vivo models. Curr Drug Metab 8:341-363.
    Yasuda K, Lan LB, Sanglard D, Furuya K, Schuetz JD and Schuetz EG (2002) Interaction of cytochrome P450 3A inhibitors with P-glycoprotein. J Pharmacol Exp Ther 303:323-332.
    Yokooji T, Murakami T, Yumoto R, Nagai J and Takano M (2007) Role of intestinal efflux transporters in the intestinal absorption of methotrexate in rats. J Pharm Pharmacol 59:1263-1270.
    Zhou SF, Xue CC, Yu XQ, Li C and Wang G (2007) Clinically important drug interactions potentially involving mechanism-based inhibition of cytochrome P450 3A4 and the role of therapeutic drug monitoring. Ther Drug Monit 29:687-710.
    康桂禎 (2006) Investigation on the Pharmacokinetics of Vardenafil in Rats by High-performance Liquid Chromatography with Fluorescence Detection. 國立成功大學碩士論文.
    陳羽軒 (2006) Effect of Cranberry juice on the pharmacokinetics of Tadalafil (Cialis®) in Rats. 國立成功大學碩士論文.

    無法下載圖示 校內:2023-08-20公開
    校外:2058-08-20公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE