簡易檢索 / 詳目顯示

研究生: 吳嘉玲
Wu, Chia-Ling
論文名稱: 氧化釩摻雜鉭之薄膜應用於熱阻型微感測器特性研究
Performance Investigation of VOx Doped Tantalum in Microbolometers
指導教授: 李欣縈
Lee, Hsin-Ying
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 76
中文關鍵詞: 懸浮式熱敏阻型感測器氧化釩摻雜鉭薄膜響應度電阻溫度係數自熱效應
外文關鍵詞: Floating-type microbolometer, Ta-doped VOx thin film, Responsivity, Temperature coefficient of resistance, Self-heat effect
相關次數: 點閱:109下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為氧化釩摻雜鉭薄膜之熱敏電阻式微感測器的特性研究,藉由摻雜鉭元素來影響其電特性,提升氧化釩薄膜對溫度的靈敏性,其中使用磁控式射頻共濺鍍系統製備摻雜鉭之氧化釩薄膜,藉由調整摻雜量大小,找出薄膜製備最佳條件,並將其應用在懸浮式熱敏電阻式微感測器。熱阻式微感測器元件採用體型微加工蝕刻技術來製作懸浮式微結構,此懸浮結構能有效減少熱能由矽基板熱散逸的問題,減少元件熱導進而提升其響應度。
    本實驗以射頻磁控式共濺鍍系統沉積氧化釩摻雜鉭薄膜,分別利用釩金屬靶與五氧化二鉭氧化靶並通入反應氣體為氧氣與氬氣,以共濺鍍的方式來控制摻雜的含量,在氮氣環境下,400oC熱處理1小時。利用可變溫之四點探針系統量測其片電阻並計算電阻溫度係數(Temperature Coefficient of Resistance, TCR),藉由能量散佈光譜儀(Energy Dispersive Spectrometers, EDS)求得鉭摻雜之原子濃度百分比,並以X光繞射分析儀(X-ray Diffraction, XRD)與X光光電子能譜術(Electron Spectroscopy for Chemical Analysis, ESCA)分析薄膜之結晶性與鍵結情形。可獲得最佳條件為摻雜鉭元素含量為11.14 %之氧化釩薄膜,其電阻溫度係數值為3.24 %K-1,相較於未摻雜之氧化釩薄膜之電阻溫度係數值提升了1.48 %K-1,室溫電阻率為9.87 -cm,並將其作為後續應用在懸浮式熱敏電阻式微感測器之感測膜。元件封裝後,量測元件之頻率響應與溫度響應,最後計算出元件熱導、熱時間常數與響應度,分別為¬¬¬5.67 x 10-10 W/K、5.14 ms與239 KV/W,並進一步量測不同定電流之元件響應度來分析元件受自熱效應影響的程度。

    In this study, the tantalum (Ta) was used to dope into the VOx films. The VOx films with various Ta-doped contents were fabricated by magnetron radio frequency (RF) co-sputtering system. The TCR values of Ta-V-O thin films were obtained by four point probe measurement with heating system. The chemical composition, crystallinity and chemical bonding of films were carried out by the Energy Dispersive Spectrometers (EDS), X-ray diffraction (XRD) and the X-ray photoelectron spectroscopy (XPS), respectively. It was found the optimal condition of Ta-V-O film with Ta concentration of 11.14 % and the TCR and resistivity of this film were 3.24 %K-1 and 9.27 Ω-cm at room temperature, respectively. The resulted were applied in the microbolometers as the sensing layer. Thermal conductance, thermal time constant and responsivity of device were calculated to be 5.67 × 10-10 W/K, 5.14 ms and 239 KV/W, respectively.

    摘要 I Abstract III 誌謝 IX 目錄 X 表目錄 XIV 圖目錄 XV 第一章 序論 1 1.1 前言 1 1.2 動機與目的 1 參考文獻 3 第二章 實驗原理簡介 4 2.1 紅外線感測器之原理及類型 4 2.1.1紅外線感測器簡介 4 2.1.2熱阻型紅外線感測器之感測機制 5 2.1.2.1.電阻溫度係數(Temperature coefficient of resistance, TCR) 5 2.1.2.2.熱導(Thermal conductivity) 6 2.1.2.3.熱時間常數(Thermal time constant) 6 2.1.2.4.靈敏度(Responsivity) 7 2.1.2.5.自熱效應(Self-heat effect) 9 2.1.3熱阻型紅外線感測器之感測層材料與製程介紹 11 2.2 氧化釩薄膜特性與製備技術 13 2.2.1氧化釩薄膜基本性質 13 2.2.2摻雜物之選擇 14 2.2.3氧化釩薄膜摻雜之製備技術 15 2.3 磁控式射頻共濺鍍系統 16 2.3.1基本電漿濺鍍原理簡介 16 2.3.2磁控式射頻(RF)濺鍍原理 17 參考文獻 18 第三章 實驗流程 32 3.1 氧化釩鉭之薄膜製程 32 3.1.1試片清潔 32 3.1.2氧化釩鉭之薄膜沉積 32 3.2 薄膜性質之量測 33 3.2.1薄膜厚度量測 33 3.2.2低掠角薄膜繞射儀 33 3.2.3 X光光電子能譜儀 34 3.2.4化學定量分析 34 3.2.5四點探針 35 3.3 元件光罩設計與製作流程 36 3.3.1元件光罩設計 36 3.3.2元件製作流程 37 3.4 元件量測 41 3.4.1元件之頻率響應 41 3.4.2元件之溫度響應 41 第四章 實驗量測與結果討論 50 4.1 氧化釩鉭之薄膜特性 50 4.1.1薄膜成分與電阻溫度變化係數分析 51 4.1.2薄膜結晶性分析 53 4.1.3薄膜鍵結分析 54 4.2 氧化釩摻雜鉭之熱阻型感測元件特性量測 57 4.2.1頻率響應分析 57 4.2.2溫度響應分析 57 4.2.3響應度分析 58 4.2.4熱導分析 59 4.2.5自熱效應影響 59 參考文獻 61 第五章 結論與未來展望 75 5.1 結論 75 5.2 未來展望 76

    第一章
    [1] A. Rogalski, “Recent progress in infrared detector technologies,” IR. Phys. & Tech., 54, 136 (2011).
    [2] P. Umadevi, C. L. Nagendra, and G. K. M. Thutupalli, “Structural, electrical and infrared optical properties of vanadium pentoxide (V2O5) thick-film thermistors,” Sens. Actuators A: Phys., 39, 59 (1993).
    [3] H. Jerominek, F. Picard, and D. Vincent, “Vanadium oxide films for optical switching and detection,” Opt. Eng., 32, 2092 (1993).
    [4] L. N. Son, T. Tachiki, and T. Uchida, “Characteristics of vanadium oxide thin films prepared by metal–organic decomposition for bolometer detectors,” Jap. J. Appl. Phys., 50, 025803 (2011).
    [5] J. Li, and N. Yuan, “Temperature sensitivity of resistance of VO2 polycrystalline films formed by modified ion beam enhanced deposition,” Appl. Surf. Sci., 233, 252 (2004).
    [6] Y. H. Han, K. T. Kim, H. J. Shin, S. Moon, and I. H. Choi,” Enhanced characteristics of an uncooled microbolometer using vanadium–tungsten oxide as a thermometric material,” Appl. Phys. Lett., 86, 254101 (2005).
    第二章
    [1] Q. Cheng, “Design of dual-band uncooled infrared microbolometer,” IEEE Sens. J., 11, 167 (2011).
    [2] M. V. S. Ramakrishna, G. Karunasiri, P. Neuzil, U. Sridhar, and W. J. Zeng, “Highly sensitive infrared temperature sensor using self-heating compensated microbolometers”, Sens. Actuators A-phys., 79, 122-127 (2000).
    [3] X. Gu, G. Karunasiri, J. Yu, G. Chen, U. Sridhar, and W.J. Zeng, “On-chip compensation of self-heating effects in microbolometer infrared detector arrays”, Sens. Actuators A-phys., 69, 92–96 (1998).
    [4] S. P. Langley, “The bolometer and radiant energy,” Proc. Am. Acad., 16, 342 (1881).
    [5] H. K. Lee, J. B. Yoon, E. Yoon, S. B. Ju, Y. J. Yong, W. Lee, and S. G. Kim, “A high fill-factor infrared bolometer using micromachined multilevel electrothermal structures,” IEEE Trans. Electron Devices, 46, 1489 (1999).
    [6] K. C. Liddiard, “Thin-film resistance bolometer IR detectors,” Infrared Phys., 24, 57 (1984).
    [7] Q. Cheng, “Design of dual-band uncooled infrared microbolometer,” IEEE Sens. J., 11, 167 (2011).
    [8] X. M. Liu, H. J. Fang, and L. T. Liu, “Study on new structure uncooled a-Si microbolometer for infrared detection,” Microelectron. J., 38, 735 (2007).
    [9] H. K. Lee, J. B. Yoon, E. Yoon, S. B. Ju, Y. J. Yong, W. Lee, and S. G. Kim, “A high fill-factor infrared bolometer using micromachined multilevel electrothermal structures,” IEEE Trans. Electron Devices, 46, 1489 (1999).
    [10] R. A. Wood, “Use of vanadium oxide in mircobolometer sensors,” United States Patent No. 5450053 (1995).
    [11] H. Kakiuchida, P. Jin, and M. Tazawa, “Control of thermochromic spectrum in vanadium dioxide by amorphous silicon suboxide layer,” Sol. Energy Mater. Sol. Cells, 92, 1279 (2008).
    [12] T. Mori, and K. Kawano, “Oxide thin film for bolometer and infrared detector using the oxide thin film,” United States Patent No.6489613 (2002).
    [13] W. G. Baer, T. Hull, K. D. Wise, K. Najafi, and K. D. Wise, “A multiplexed silicon infrared thermal imager,” Proc. of Transducers, 91, 631 (1991).
    [14] R. A. Wood, “Monolithic silicon microbolometer arrays,” Semiconductors and Semimetals, 47, 45–121(1997).
    [15] 翁炳國,「矽之微細加工技術及應用」,國立交通大學光電工程研究所博士論文,(1992)。
    [16] H. B. Morris, “Method of operating a high responsivity thermochromic infrared detector,” United States Patent No. 6121618 (2000).
    [17] A. Bagolini1, “Polyimide sacrificial layer and novelmaterials for post-processing surface Micromachining,” J. Micromech. Microeng., 12, 385–389 (2002).
    [18] J. O. Dennis, F. Ahmad, and M. H. Khir, “CMOS Compatible Bulk Micromachining,” Advances in Micro/Nano Electromechanical Systems and Fabrication Technologies, chapter 5, 120-138 (2013).
    [19] A. Hierlemann, and H. Baltes, “CMOS-based chemical microsensors,” The Royal Society of Chemistry 2003, 128, 15-28 (2003).
    [20] 陳柏穎,「矽晶圓非等向性濕式蝕刻特性研究」,國立中山大學機械與機電工程研究所碩士論文,(2003)。
    [21] S. Surnev, M. G. Ramsey, and F. P. Netzer, “Vanadium oxide surface studies,” Prog. Surf. Sci., 73, 117-165 (2003).
    [22] H. Katzke, P. Tolédano, and W. Depmeier, “Theory of morphotropic transformations in vanadium oxides,” Phys. Review B, 68, 024109 (2003).
    [23] S. Nagata1, B. F. Griffing1, G. D. Khattak1 and P. H. Keesom1, “Susceptibilities of the vanadium Magneli phases Vn02n-1 at low temperature”, Phys. Rev. B., 20, 7 (1979).
    [24] J. Haber, M. Witko, R. Tokarz, “Vanadium pentoxideI. Structures and properties,” Appl. Catal. A: Gen., 157, 3-22 (1997).
    [25] K. M. Park, S. Yi, S. Moon, S. Im, “optimum oxygen concentration for the optoelectonic properties of IR sensitive VOx thin film,” Opt. Mater., 17, 311-314 (2001).
    [26] B. F. Griffing, S. A. Shivashankar, S. P. Faile, and J. M. Honig, ”Metal-insulator transition in V407. Specific-heat measurements and interpretation,” Phys. Rev. B., 31, 12 (1985).
    [27] B. F. Griffing, S. P. Faile, and J. M. Honig, ”Evidence for one-dimensional spin order in Vsos,” Phys. Rev., 21, 1 (1980)
    [28] M. Kang, I. Kim, S. W. Kim, J. W. Ryu, and H. Y. Park, ”Metal-insulator transition without structural phase transition in
    V2 O5 film,” Appl. Phys. Lett., 98, 131907 (2011).
    [29] A. Jagadeesh, T. M. Rattan, M. Muralikrishna, K. Venkataramaniah, “Instant one step synthesis of crystallinenanoV2O5 by solution combustion method showing enhanced negative temperature coefficient of resistance,” Mater. Lett., 121,133-136 (2014).
    [30] 陳冠中,「二氧化釩粉末之製備及其性質研究」,國立成功大學材料科學及工程系碩士論文,(1996)。
    [31] Gurvitch, S. Luryi, A. Y. Polyakov, A. Shabalov, “Bolometric sensor with high tcr and tunable low resistivity,” United States Patent No.0248167 (2011).
    [32] H.L.M. Chang, H. You, J. Guo and D.J. Lain, “Epitaxial TiO 2 and VO2 films prepared by MOCVD,” Appl. Surf. Sci., 48–49, 12–18 (1992).
    [33] D. H. Kim and H. S. Kwok, “Pulsed laser deposition of VO2 thin films,” Appl. Phys. Lett., 65, 3188–3190 (1994).
    [34] J. H. Li, N. Y. Yuan, H. L.W. Chen, C. L. Lin, “Preparation of vanadium dioxide thin film with high temperature coefficient of resistance from V2O5 powder by ion beam enhanced deposition,” Acta phys. Sin., 51, 1788–1792 (2002).
    [35] M. Pan, H. Zhong, S. Wang, J. Liu, Z. Li, X. Chen, W. Lu, “Properties of VO2 thin filmprepared with precursor VO(acac)2,” J. Cryst. Growth, 265, 121–126 (2004).
    [36] Y. H. Hana, K. T. Kima, C. A. Nguyen, H. J. Shin, I. H. Choi, S. Moon, “Fabrication and characterization of bolometric oxide thin film based on vanadium–tungsten alloy,” Sens. Actuators A: Phys., 123–124, 660–664 (2005).
    [37] Q. Zhang, Z. Wu, Y. Jiang, K. Zhao, ” Study on preparation and electrical properties of Mo-doped vanadium oxide thin films by organic sol-gel,” 2009 International Conference on Optical Instruments and Technology: Optoelectronic Imaging and Process Technology, 7513, 751314 (2009).
    [38] G. M. Gouda, C. L. Nagendra, “Structural and electrical properties of mixed oxides of manganese and vanadium:A new semiconductor oxide thermistor material,” Sens. Actuators A: Phys., 155, 263–271 (2009).
    [39] J. B. M. Chesney, H. J. Guggenheim, ”Growth and electrical properties of vanadium dioxide single crystals containing selected impurity ions,” J. Phys. Chem. Solids, 30, 225-234 (1969).
    [40] R. M. Bowman, J. M. Gregg ,” VO2 thin films: growth and the effect of applied strain on their resistance,” J. Mater. Sci.: Mater. Electron., 9,187-191 (1998).
    [41] J. Li, N. Yuan., “Formation mechanism of the VO2 polycrystalline film prepared by modified ion-beam enhanced deposition,” SPIE., 5774, 232-236 (2004).
    [42] P. Jin, S. Nakao, S. Tanemura., “Tungsten doping into vanadium dioxide thermochromic films by high-energy ion implantation and thermal annealing ,” Thin Solid Films, 324, 151-158 (1998).
    [43] F. Cardillo, “Modifications in the phase transition properties of predeposited VO2 films,” J. Vac. Sci. Technol. A, 2, 1509 (1984).
    [44] G. Chiarello, R. Barberi, A. Amoddeo, L. S. Caputi, E. Colavita ,” XPS and AFM characterization of a vanadium oxide film on TiO2(100) surface,” Appl. Surf. Sci., 99, 15-19 (1996).
    [45] D. H. Youn, J. W. Lee, B. G. Chae, H. T. Kim, S. L. Maeng, and K. Y. Kang, “Growth optimization and electrical characteristics of VO2 films on amorphous SiO2/Si substrates,” J. Appl. Phys., 95, 1407 (2004).
    [46] R. T. R. Kumara, B. Karunagaran, D. Mangalaraj, S. K. Narayandass, P. Manoravi, M. Joseph, and V. Gopal, “Pulsed laser deposited vanadium oxide thin films for uncooled infrared detectors,” Sens. Actuator A-Phy., 107, 62 (2003).
    第四章
    [1] C. H. Chen, X. J. Yi, and Z. H. Cheng, “Fabrication of 8-element Linear VOx Uncooled Microbolometer,” Chin. J. Lasers, 28, 1082-1084 (2001).
    [2] J. Verkelis, Z. Bliznikas, and K. Breive, “Vanadium Oxides Thin Films and Fixed-Femperature Heat Sensor with Memory,” Sens. Actuators, 68, 338-343 (1998).
    [3] A. Ozcelik, O. Cabarcos, D. L. Allara, and M. W. Horn, “Vanadium Oxide Thin Films Alloyed with Ti, Zr, Nb, and Mo for Uncooled Infrared Imaging Applications,” J. Electron. Mater., 42, 5 (2013).
    [4] Z. Qianlin, Z. Wu, Y. Jiang, and K. Zhao, ”Study on preparation and electrical properties of Mo-doped vanadium oxide thin films by organic sol-gel,” SPIE, 7513, 751314 (2009).
    [5] S. H. Chen, J. J. Lai, J. Dai, H. Ma, H. C. Wang, and X. J. Yi, “Characterization of nanostructured VO2 thin films grown by magnetron controlled sputtering deposition and post annealing method,” Opt. Express, 17, 24153 (2009).
    [6] Q. Su, W. Lan, Y. Y. Wang, and X. Q. Liu, “Structural characterization of β-V2O5 films prepared by DC reactive magnetron sputtering,” Appl. Surf. Sci., 255, 4177 (2009).
    [7] M. Kang, I. Kim, S. W. Kim, J. W. Ryu, and H. Y. Park, “Metal-insulator transition without structural phase transition in V2O5 film,” Appl. Phys. Lett., 98, 131907 (2011).
    [8] Z. Bo, S. Qing, and H. De-Yan, “First-principles calculations on the electronic and vibrational properties of β-V2O5,” Chin. Phys. Soc., 18, 1674 (2009).
    [9] G. Silversmit, D. Depla, H. Poelman, G. B. Marin, and R. D. Gryse, ”Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+),” J. Electron. Spectrosc. Relat. Phenom., 135, 167–175 (2004).
    [10] J. Mendialdua, R. Casanova, and Y. Barbaux, ” XPS studies of V2O5, V6O13 , VO2 and V2O3, ” J. Electron. Spectrosc. Relat. Phenom., 71, 249-261 (1995).
    [11] R Zimmermann, R. Claessen, F. Reinert, P Steiner, and S. Hüfner, “Strong hybridization in vanadium oxides: evidence from photoemission and absorptionspectroscopy,” J. Phys.: Condens. Matter, 10, 5697 (1998).
    [12] A. Jagadeesh, T. M. Rattan, M. Muralikrishna, K. Venkataramaniah, “Instant one step synthesis of crystallinenanoV2O5 by solution combustion method showing enhanced negative temperature coefficient of resistance,” Mater. Lett., 121,133-136 (2014).
    [13] J. G. S. Moo, and Z. Awaludin, ”An XPS depth-profile study on electrochemically deposited TaOx,” J. Solid State Electrochem., 17, 3115–3123 (2003).
    [14] H. Demiryont, J. R. Sites, and K. Geib, ”Effects of oxygen content on the optical properties of tantalum oxide films deposited by ion-beam sputtering,” Applied Optics, 24, 490-495 (1985).

    無法下載圖示 校內:2019-09-09公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE