研究生: |
施岳廷 Shih, Yueh-Ting |
---|---|
論文名稱: |
Si-xAl薄膜負極在室溫及55℃之電化學性質及結構特性探討 The Electrochemical Properties and Structural Characteristics of Si-xAl Thin Film Anode at Room Temperature and 55℃ |
指導教授: |
呂傳盛
Lui, Truan-Sheng 陳立輝 Chen, Li-Hui |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 48 |
中文關鍵詞: | Si-Al 、充放電 、鋰離子電池 、負極材料 |
外文關鍵詞: | Si-Al, charge-discharge, lithium ion battery, anode material |
相關次數: | 點閱:62 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用射頻磁控濺鍍法製備Si-xAl薄膜負極材料,不同含量的鋁(Si-8Al, Si-23Al, Si-43Al (at.%))被添入矽基地中做為緩衝物,以減緩矽薄膜在嵌鋰-脫鋰過程中劇烈的體積膨脹。實驗中探討Si-xAl薄膜負極材料在室溫及高溫(55℃)的電化學性質及其結構特性。
實驗結果指出,當矽基地中鋁含量增加時,鋰離子將由與Si-Al共同反應轉變為僅與鋁反應。與室溫相較,在55℃環境充放電時,增加的嵌鋰-脫鋰反應量會造成電容量的上升,但伴隨而來劇烈的體積膨脹,將造成循環穩定性的降低。除此之外,在55℃充放電測試過程中Si-23Al薄膜會有結晶化現象產生。
經由電化學阻抗(EIS)分析也發現,在室溫時,Si-8Al與Si-23Al電化學反應阻抗的差異是由電荷轉移過程所主導,而55℃時則是由鋰離子在材料中的擴散所主導。
In this study, Al was added into Si matrix as the buffer (Si-8Al, Si-23Al, Si-43Al) by RF magnetron sputtering to prevent the dramatic volumetric expansion of pure Si thin film anode during lithiation and delithiation. The electrochemical properties and structural characteristics of Si-xAl films at room temperature and high temperature (55℃) were investigated.
As the addition content of Al in Si matrix increase, lithium ions react with Al only instead of both Al and Si. At 55℃, the higher lithiation and delithiation quantity accompanied a dramatic volumetric expansion which increased the capacity but degraded the stability, besides the Si-23Al thin film was occurred crystallization during charge-discharge.
According to the EIS results, the resistances against electrochemical reactions of Si-8Al and Si-23Al are controlled by diffusion of lithium ions in the anode materials at high temperature while charge transfer process at room temperature.
1. 王兆祥、黃可龍、劉素琴 (2010),鋰離子電池原理與技術,台北:五南圖書。
2. J. M. Tarascon, M. Armand (2001), “Issues and challenges facing rechargeable lithium batteries ,” Nature, 414, pp. 359-367.
3. 林志豪 (2003),「鋁、鎳添加物對鋰離子電池陰極材料-LiMn2O4電性及電化學性質之影響」,國立成功大學材料科學及工程學系碩士論文。
4. 涂慧娟 (2008),「碳源粒徑對磷酸亞鐵鋰/碳鋰離子電池複合陰極材料之影響」,國立中央大學化學工程與材料工程研究所碩士論文。
5. 吳昭漢 (2006),「射頻磁控濺鍍Cu6Sn5電極之充放電特性研究」,國立成功大學材料科學及工程學系碩士論文。
6. U. Kasavajjula, C. Wang, A. J. Appleby (2007), “Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells,” J. Power Sources, 163, pp.1003-1039.
7. W. J. Zhang (2011), “A review of the electrochemical performance of alloy anodes for lithium-ion batteries,” J. Power Sources, 196, pp.13-24.
8. 尹立輝、高俊奎、邱瑞珍 (2005),「鋰離子電池鍍錫陽極材料的研究」,電源技術,29,頁716-718。
9. J. Wolfenstine, S. Campos, D. Foster, J. Read, W. J. Behl (2002), “Nano-scale Cu6Sn5 anodes,” J. Power Sources, 109, pp.230-233.
10. W. J. Zhang (2011), “Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries,” J. Power Sources, 196, pp.877-885.
11. K. Yoshimura, J. Suzuki, K. Sekine, T. Takamura (2005), “Evaluation of the Li insertion/extraction reaction rate at a vacuum-deposited silicon film anode,” J. Power Sources, 146, pp.445-447.
12. S. Ohara, J. Suzuki, K. Sekine, T. Takamura (2003), “Li insertion/extraction reaction at a Si film evaporated on a Ni foil,”J. Power Sources, 119–121, pp.591-596.
13. J. Graetz, C. C. Ahn, R. Yazami, B. Fultz (2003), “Highly reversible lithium storage in nanostructured silicon,”Electrochem. Solid-State Lett., 6, pp.A194-A197.
14. I.S. Kim, G.E. Blomgren, P.N. Kumta (2003), “ Nanostructured Si/TiB2 composite anodes for Li-ion batteries,”Electrochem. Solid-State Lett., 6, pp.A157-A.161.
15. D. W. Todd, P. P. Ferguson, J. G. Barker, M. D. Fleischauer, J. R. Dahn(2009), “Comparison of mechanically milled and sputter deposited Tin–Cobalt–Carbon alloys using small angle neutron scattering,” J. Electrochem. Soc., 156 , pp.A1034-A1040.
16. M. D. Fleischauer, J. M. Topple, J. R. Dahn(2005), “Combinatorial investigations of Si-M (M = Cr + Ni, Fe, Mn) thin film negative electrode materials,”Electrochem. Solid-State Lett.,8 , pp.A137-A140.
17. Y. L. Kim, H. Y. Lee, S. W. Jang, S. H. Lim, S. J. Lee, H. K. Baik, Y. S.
Yoon, S. M. Lee (2003), “Electrochemical characteristics of Co/Si alloy and multilayer films as anodes for lithium ion microbatteries,” Electrochim. Acta, 48, pp.2593-2597.
18. S. J. Lee, H. Y. Lee, H. K. Baik, S. M. Lee (2003), “Si–Zr alloy thin-film anodes for microbatteries,” J. Power Sources, 119–121, pp.113-116.
19. M. D. Fleischauer, M. M. Obrovac, J. R. Dahn(2008), “Al-Si thin film negative electrodes for Li-ion batteries,” J. Electrochem. Soc., 155, pp.A851-A854.
20. L. B. Chen, J. Y. Xie, H. C. Yu, T. H. Wang(2008), “Si–Al thin film anode
material with superior cycle performance and rate capability for lithium ion batteries,” J. Electrochimica Acta,53, pp.8149-8153.
21. L. Y. Beaulieu, T. D. Hatchard, A. Bonakdarpour, M. D. Fleischauer, J. R. Dahn(2003), “Reaction of Li with alloy thin films studied by in situ AFM,” J. Electrochem. Soc., 150, pp.A1457-A1464.
22. T. D. Hatchard, J. R. Dahn(2005), “Electrochemical reaction of the SiAg binary system with Li,” J. Electrochem. Soc., 152 , pp.A1445-A1451.
23. T. D. Hatchard, M. N. Obrovac, J. R. Dahn(2005), “Electrochemical reaction of the Si1–xZnx binary system with Li,” J. Electrochem. Soc., 152, pp.A2335-A2344.
24. S. W. Song, K. A. Striebel, R. P. Reade, G. A. Roberts, E. J. Cairns(2003), “Electrochemical studies of nanoncrystalline Mg2Si thin film electrodes prepared by pulsed laser deposition,” J. Electrochem. Soc., 150, pp.A121-A127.
25. S. J. Lee, H. K. Baik, S. M. Lee(2003), ‘’An all-solid-state thin film battery using LISIPON electrolyte and Si–V negative electrode films,” Electrochem. Commun., 5, pp.32-35.
26. 張博富 (2008),「摻雜金屬鑭改質LiFePO4/C鋰離子電池陰極材料」,國立中央大學化學工程與材料工程研究所碩士論文。
27. 莊全超、徐守冬、邱祥雲、崔永麗、方亮、孫世剛(2010),「鋰離子電池的電化學阻抗譜分析」,化學進展,22,頁1044-1057
28. R. Hua, M. Zenga, C. Y. V. Li, M. Zhua(2009), “Microstructure and electrochemical performance of thin film anodes for lithium ion batteries in immiscible Al–Sn system,” J. Power Sources, 188, pp.268-273.
29. A. J. Bard, L. R. Faulkner(2001), Electrochemical Methods Fundamentals and Applications (2nd ed.), John Wiley & Sons, Inc.
30. J. Xie, N. Imanishi, T. Zhang, A. Hirano, Y. Takeda, O. Yamamoto(2010), “Li-ion diffusion in amorphous Si films prepared by RF magnetron sputtering: A comparison of using liquid and polymer electrolytes,” J. Materials Chemistry and physics, 120, pp.421-425.
31. T. Zhanga, H. P. Zhanga, L. C. Yanga, B. Wanga, Y. P. Wua, T. Takamurab(2008), “The structural evolution and lithiation behavior of vacuum-deposited Si film with high reversible capacity,” Electrochimica Acta, 53, pp.5660–5664.
32. 周建志 (2007),「濺鍍非晶質SbTe合金薄膜電阻特性之Ag/In複合添加與結晶化效應研究」,國立成功大學材料科學及工程學系博士論文。