| 研究生: |
劉坤儒 Liu, Kun-Ru |
|---|---|
| 論文名稱: |
行星式球磨對Fe-Si-Cr合金粉末之顯微結構與電磁特性影響之研究 Effect of planetary ball milling on the microstructure and electromagnetic properties of Fe-Si-Cr alloy powders |
| 指導教授: |
向性一
Hsiang, Hsing-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | Fe-Si-Cr合金 、硬脂酸 、氧化鋁 、PCA 、行星式球磨 、退火 、氧化 、超晶格 |
| 外文關鍵詞: | Fe-Si-Cr alloy, PCA, planetary ball milling, oxidation, superlattice |
| 相關次數: | 點閱:140 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用平均粒徑約180 nm的α-Al2O3以及硬脂酸(Stearic acid)做為過程添加劑(PCA),將Fe-Si-Cr合金粉末置於行星式球磨中進行研磨處理以細化,其中利用SEM分析球磨過程中形貌的改變,結果顯示硬脂酸與氧化鋁兩者確實皆可充當PCA的角色,使研磨過程中冷焊情況不會發生,而氧化鋁的添加更使得研磨效率上升,Fe-Si-Cr粉末之平均粒徑自50 μm遞減至4 μm,且氧化鋁有絕緣包覆Fe-Si-Cr合金顆粒的效果。
研磨過後的Fe-Si-Cr合金粉末若直接進行氧化處理,會因大量差排存在,而使得大量氧化鐵的生成;故在N2/H2的氣氛下施予退火處理,從TEM分析中可確認退火處理可有效消除差排,且磁性質有回升的現象,此外,在退火過程會因鉻與矽的擴散速度不同而產生氧化鉻、氧化鋁、氧化矽的多層包覆結構。若經退火處理後施予再氧化程序,會因退火過程中已產生的超晶格DO3相,使得氧化矽與氧化鉻的生成受到抑制,生成易造成剝層的氧化鐵結構。
In this study, Fe-Si-Cr alloy powders were planetary ball milled by adding α-Al2O3 (particle size is about 180 nm) or stearic acid as the process control agent (PCA). The morphologies of the powders after milling were characterized by using SEM, and the results showed α-Al2O3 and stearic acid could indeed act as PCA because to reduce the occurrence of cold welding. Moreover, the addition of alumina can promote grinding efficiency of Fe-Si-Cr alloy powders leading to mean particle size decreased from 50 μm to about 4 μm.
The oxidation treatment of the planetary ball milled Fe-Si-Cr alloy powders resulted in a large amount of iron oxide formation due to the oxygen easily diffused along the dislocation and reacted with iron. Therefore, the annealing treatments were performed under N2/H2 atmosphere. The annealing process could effectively eliminate the dislocation based on the TEM results and hence the magnetic properties were improved. The multilayer coating structure consisting of chromium oxide, alumina and silicon oxide sequentially from the surface to the center was observed on the Fe-Si-Cr alloy powder surface during annealing due to the difference in outward diffusion rate of Fe, Si and Cr. The formation of silicon oxide and chromium oxide were inhibited and on the other hand iron oxide was formed during re-oxidation for the milled Fe-Si-Cr alloy powders due to the existence of DO3 superlattice phase after annealing process under N2/H2 atmosphere.
[1]湯士源、唐敏注,電源模組用金屬功率電感器技術簡介,工業材料雜誌349期,2016年。
[2]何冠廷,鐵矽鉻壓粉磁芯之微觀結構與磁性質關係之研究,成功大學資源工程學系,碩士論文,2016年。
[3]鄭明德,薄型大電流電感器鐵芯粉末調配之穩健最佳化設計,中國機械工程學會第二十六屆全國學術研討會論文集,2009年。
[4]B. Talic, H. Falk-Windisch, V. Venkatachalam, P.V. Hendriksen, K. Wiik, H.L. Lein, “Effect of coating density on oxidation resistance and Cr vaporization from solid oxide fuel cell interconnects,” Journal of Power Sources, 354, 57-67, 2017.
[5]K.H. Jo, J.H. Kim, K.M. Kim, I.S. Lee, S.J. Kim, “Development of a new cost effective Fe–Cr ferritic stainless steel for SOFC interconnect,” International Journal of Hydrogen Energy, 40 (30), 9523-9529, 2015.
[6]Q.Q. Guo, S. Liu, X.F. Wu, Y. Niu, “Scaling behavior of two Fe-xCr-5Si alloys under high and low oxygen pressures at 700° C,” Corrosion Science, 100, 579-588 , 2015.
[7]J.Y. Hsu, H.C. Lin, H.D. Shen, C.J. Chen, “High frequency multilayer chip inductors,” IEEE Transactions on Magnetics, 33(5), 3325-3327, 1997.
[8]G. Ballou, “Resistors, Capacitors, and Inductors,” Handbook for Sound Engineers, 241, 2013.
[9]F. Passos, E. Roca, R. Castro-López, F.V. Fernández, “An inductor modeling and optimization toolbox for RF circuit design,” Integration, the VLSI Journal, 58, 463-472, 2017.
[10]W.D. Callister, G.David, Materials science and engineering, NY: John Wiley & Sons, 2011.
[11]D. K. Ghodgaonkar, V. V. Varadan, V. K. Varadan, “Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies,” IEEE Transactions on instrumentation and measurement, 39 (2), 387-394, 1990.
[12]李國棟,我們生活在磁的世界裡:物質的磁性和應用,清華大學出版社有限公司,2000年。
[13]陳慶和,以化學共沉法製備高頻用鎳錳鐵氧磁體的開發研究,大同大學材料工程研究所,碩士論文,2007年。
[14]張寶芹,于名訊,張偉,黃成亮,李永波,各向異性磁性吸波材料的研究進展,宇航材料工藝,3卷,42-46頁,2013年。
[15]P. Kollár, D. Olekšáková, V. Vojtex, J. Füzer, M. Fáberová, R. Bureš, “Steinmetz law for ac magnetized iron-phenolformaldehyde resin soft magnetic composites,” Journal of Magnetism and Magnetic Materials, 424, 245-250, 2017.
[16]P. Kollár, Z. Birčáková, J. Füzer, R. Bureš, M. Fáberová, “Power loss separation in Fe-based composite materials,” Journal of Magnetism and Magnetic Materials, 327, 146-150, 2013.
[17]A.H. Taghvaei, H. Shokrollahi, K. Janghorban, “Eddy current and total power loss separation in the iron–phosphate–polyepoxy soft magnetic composites,” Materials & Design, 30 (10), 3989-3995, 2009.
[18]Y. Liu, Y. Yi, W. Shao, Y. shao, “Microstructure and magnetic properties of soft magnetic powder cores of amorphous and nanocrystalline alloys,” Journal of Magnetism and Magnetic Materials, 330, 119-133, 2013.
[19]T. Saito, S. Takemoto, T. Iriyama, “Resistivity and core size dependencies of eddy current loss for Fe-Si compressed cores,” IEEE Transactions on Magnetics, 41 (10), 3301-3303, 2005.
[20]H. Shokrollahi, K. Janghorban, “Soft magnetic composite materials (SMCs),” Journal of Materials Processing Technology, 189 (1), 1-12, 2007.
[21]Y. Qing, W. Zhou, F. Luo, D. Zhu, “Thin-thickness FeSiAl/flake graphite-filled Al2O3 ceramics with enhanced microwave absorption,” Ceramics International, 43 (1), 870-874, 2017.
[22]汪建民,粉末冶金手冊,中華民國粉末冶金工業,2001年。
[23]謝旭霞,呂建偉,金兆偉,杜宇,金屬軟磁粉芯的研究進展,熱噴射技術,第4期,71-76頁,2014年。
[24]張軒耀,Fe-Si-Cr合金粉之添加水玻璃絕緣處理之研究,國立台北科技大學材料及資源工程系研究所,2014年。
[25]陳柏宇,退火後鐵基非晶質薄帶之結構性質分析,臺灣大學材料科學與工程學研究所學位論文 ,2016年。
[26]W.H. Wang, C. Dong, C.H. Shek, “Bulk metallic glasses,” Materials Science and Engineering: R: Reports, 44 (2), 45-89, 2004.
[27]Y. Peng, J. Nie, W. Zhang, J. Ma, C. Bao, Y. Cao, “Effect of the addition of Al2O3 nanoparticles on the magnetic properties of Fe soft magnetic composites,” Journal of Magnetism and Magnetic Materials, 399, 88-93, 2016.
[28]田建軍,崔建民,袁勇,張德金,李霆,于永亮,絕緣鐵粉基軟磁複合材料的研究進展,金屬功能材料 ,17卷,4期,50-54頁,2010。
[29]A.H. Taghvaei, H. Shokrollahi, K. Janghorban, “Properties of iron-based soft magnetic composite with iron phosphate–silane insulation coating,” Journal of Alloys and Compounds, 481 (1), 681-686, 2009.
[30]W. Ding, L. Jiang, Y. Liao, J. Song, B. Li, G. Wu, “Effect of iron particle size and volume fraction on the magnetic properties of Fe/silicate glass soft magnetic composites,” Journal of Magnetism and Magnetic Materials, 232-238, 378, 2015.
[31]J. Wang, X. Fang, Z. Wu, G. Li, “Regulation and control of insulated layers for intergranular insulated Fe/SiO2 soft magnetic composites,” Journal of Materials Science, 52 (12), 7091-7099, 2017.
[32]G. Zhao, C. Wu, M. Yan, “Enhanced magnetic properties of Fe soft magnetic composites by surface oxidation,” Journal of Magnetism and Magnetic Materials, 399, 51-57, 2016.
[33]X. Fan, J. Wang, Z. Wu, G. Li, “Core–shell structured FeSiAl/SiO2 particles and Fe3Si/Al2O3 soft magnetic composite cores with tunable insulating layer thicknesses,” Materials Science and Engineering: B, 201, 79-86, 2015.
[34]K.J. Sunday, K.A. Darling, F.G. Hanejko, B. Anasori, Y.C. Liu, M.L. Taheri, “Al2O3 “self-coated” iron powder composites via mechanical milling,” Journal of Alloys and Compounds, 653, 61-68, 2015.
[35]Y. Peng, Y. Yi, L. Li, J. Yi, J. Nie, C. Bao, “Iron-based soft magnetic composites with Al2O3 insulation coating produced using sol–gel method,” Materials & Design, 109, 390-395, 2016.
[36]S.F. Chen, H.Y. Chang, S.J. Wang, S.H. Chen, C.C. Chen, “Enhanced electromagnetic properties of Fe–Cr–Si alloy powders by sodium silicate treatment,” Journal of Alloys and Compounds, 637, 30-35, 2015.
[37]Y. Zhang, T.D. Zhou, “Structure and electromagnetic properties of FeSiAl particles coated by MgO,” Journal of Magnetism and Magnetic Materials, 426, 680-684, 2017.
[38]L. Xiao, Y. Sun, C. Ding, L. Yang, L. Yu, “Annealing effects on magnetic properties and strength of organic-silicon epoxy resin-coated soft magnetic composites,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228 (12), 2049-2058, 2014.
[39]X. Zhong, Y. Liu, J. Li, Y. Wang, “Structure and magnetic properties of FeSiAl-based soft magnetic composite with AlN and Al2O3 insulating layer prepared by selective nitridation and oxidation,” Journal of Magnetism and Magnetic Materials, 324 (17), 2631-2636, 2012.
[40]C. Oikonomou, “Surface Characterization of Soft Magnetic Composite Powder and Compacts,” 2014.
[41]X. Wang, J. Li, N. Zhang, J. Xie, D. Liang, L. Deng, “Evolution of hyperfine structure and magnetic characteristic in Fe-Si-Cr alloy with increasing heat treatment temperature,” Materials & Design, 96, 314-322, 2016.
[42]P.C. Shyni, A. Perumal, “Structural and magnetic properties of nanocrystalline Fe–Co–Si alloy powders produced by mechanical alloying,” Journal of Alloys and Compounds, 648, 658-666, 2015.
[43]P. Jang, G. Choi, C. Bae, “Effects of Ordering on the Magnetic Properties of Gas-Atomized Fe–Si–Cr Powders,” IEEE Transactions on Magnetics, 53 (4), 1-4, 2017.
[44]H.P. Xu, R.W. Wang, D. Wei, C. Zeng, “Crystallization kinetics and magnetic properties of FeSiCr amorphous alloy powder cores,” Journal of Magnetism and Magnetic Materials, 385, 326-330, 2015.
[45]N. Zhang, G. Li, X. Wang, T. Liu, J. Xie, “The influence of annealing temperature on hyperfine magnetic field and saturation magnetization of Fe–Si–Al–Cr flake-shaped particles,” Journal of Alloys and Compounds, 672, 176-181, 2016.
[46]V.B. Trindade, U. Krupp, P.E.G. Wagenhuber, H.J. Christ, “Oxidation mechanisms of Cr‐containing steels and Ni‐base alloys at high temperatures Part I: The different role of alloy grain boundaries,” Materials and Corrosion, 56 (11), 785-790, 2005.
[47]C. Suryanarayana, E. Ivanov, “Mechanical alloying for advanced materials,” Powder Materials: Current Research and Industrial Practices III, 169-178, 2003.
[48]C. Suryanarayana, “Mechanical alloying and milling,” Progress in materials science, 46 (1), 1-184, 2001.
[49]L. Lü, M.O. Lai, Mechanical alloying, Springer Science & Business Media, 2013.
[50]陳佑慈,機械合金法與電化學去合金製程製作複合觸媒應用於燃料電池,交通大學材料科學與工程研究所,碩士論文,2009年。
[51]R.M. Davis, B. McDermott, C.C. Koch, “Mechanical alloying of brittle materials,” Metallurgical and Materials Transactions A, 19 (12), 2867-2874, 1988.
[52]肖鵬,趙瑋兵,梁淑華,范志康,機械合金化法製備不同Cr含量的W-Cr纳米合金粉末,中國有色金屬學報 ,17卷,11期,1779-1784頁,2007年。
[53]B.B. Bokhonov, I.G. Konstanchuk, V.V. Boldyrev, “The stages of formation of a solid solution during the mechanical alloying of Si and Ge,” Journal of alloys and compounds, 191 (2), 239-242, 1993.
[54]C. Suryanarayana, E. Ivanov, V.V. Boldyrev, “The science and technology of mechanical alloying,” Materials Science and Engineering: A, 304, 151-158, 2001.
[55]J. S. Benjamin, “Mechanical alloying,” Scientific American, 234 (5), 40-48, 1976.
[56]C. Machio, H. K. Chikwanda, S. Chikosha, “Effect of process control agent (PCA) on the characteristics of mechanically alloyed Ti-Mg powders,” Journal of the Southern African Institute of Mining and Metallurgy, 111 (3), 149-153, 2011.
[57]M. Pilar, J.J. Sunol, J. Bonastre, L. Escoda, “Influence of process control agents in the development of a metastable Fe–Zr based alloy,” Journal of Non-Crystalline Solids, 353 (8), 848-850, 2007.
[58]S. Alamolhoda, S. Heshmati-Manesh, A. Ataie, A. Badiei, “Role of Process Control Agents on Milling Behavior of Al and TiO2 Powder Mixture to Synthesize TiAl/Al2O3 Nano Composite,” International Journal of Modern Physics Conference Series, 5, 638, 2012.
[59]A. Nouri, P.D. Hodgson, C.E. Wen, “Study on the role of stearic acid and ethylene-bis-stearamide on the mechanical alloying of a biomedical titanium based alloy,” Metallurgical and Materials Transactions A, 41 (6), 1409-1420, 2010.
[60]H. Kurama, Ş. Erkuş, H. Gaşan, “ The effect of process control agent usage on the structural properties of MgB2 synthesized by high energy ball mill,” Ceramics International, 2017.
[61]陳鼎,嚴紅革,黃培云,機械力化學技術研究進展,稀有金屬,27卷,2期,293-298頁,2003年。
[62]M. Ramezani, T. Neitzert, “Mechanical milling of aluminum powder using planetary ball milling process,” Journal of Achievements in Materials and Manufacturing Engineering, 55 (2), 790-798, 2012.
[63]K. Geng, Y. Xie, L. Xu, B. Yan, “Structure and magnetic properties of ZrO2-coated Fe powders and Fe/ZrO2 soft magnetic composites,” Advanced Powder Technology , 2017.
[64]B. Chen, S. Li, H. Imai, L. Jia, J. Umeda, M. Takahashi, K. Kondoh, “An approach for homogeneous carbon nanotube dispersion in Al matrix composites,” Materials & Design, 72, 1-8, 2015.
[65]R.E. Reed-Hill, R. Abbaschian, Physical metallurgy principles, Monterey, Calif, USA: Brooks/Cole Engineering Division, 1973.
[66]N. Zhang, X. Wang, P. Zhou, J. Xie, L. Deng, “Enhance the Magnetic Properties of Fe-Si-Al-Cr Flaky Particles by Annealing,” PIERS Proceedings, 2014.
[67]A. Canakci, F. Erdemir, T. Varol, A. Patir, “Determining the effect of process parameters on particle size in mechanical milling using the Taguchi method: measurement and analysis,” Measurement, 46 (9), 3532-3540, 2013.
[68]王崇國,陳衛東,球料比對高密度片狀銀粉的影響,中國冶金,25卷,08期,15-17頁,2015年。
[69]陸坤權,顆粒物質(上),物理 ,33卷,9期,2004年。
[70]M. Abshinova, “Factors Affecting Magnetic Properties of Fe-Si-Al and Ni-Fe-Mo Alloys,” Procedia Engineering, 76, 35-44, 2014.
[71]K.G. Raghavendra, A. Dasgupta, P. Bhaskar, K. Jayasankar, C.N. Athreya, P. Panda, S. Saroja, V.S. Sarma, R. Ramaseshan, “Synthesis and characterization of Fe-15wt.% ZrO2 nanocomposite powders by mechanical milling,” Powder Technology, 287, 190-200, 2016.
[72]B.F. Zou, T.D. Zhou, J. Hu, “Effect of amorphous evolution on structure and absorption properties of FeSiCr alloy powders,” Journal of Magnetism and Magnetic Materials, 335, 17-20, 2013.
[73]X. Wang, R. Gong, P. Li, L. Liu, W. Cheng, “Effects of aspect ratio and particle size on the microwave properties of Fe–Cr–Si–Al alloy flakes,” Materials Science and Engineering: A, 466 (1), 178-182, 2007.
[74]J. Ahmed, M.A. Hussein, F. Patel, N. Al-Aqeeli, “Phase evolution studies during mechanical alloying of Fe (82− x)-Cr 18-Si x (x= 0, 1, 2, 3) alloy,” Journal of Alloys and Compounds, 683, 463-469, 2016.
[75]陳增濤,翟云喜,延性材料動態破碎機理及初始損傷效應,材料科學與工藝 ,2卷,1期,33-38頁,1994年。
[76]F. Ostovan, K.A. Matori, M. Toozandehjani, A. Oskoueian, H.M. Yusoff, R. Yunus, A.H.M. Ariff, “Microstructural evaluation of ball-milled nano Al2O3 particulate-reinforced aluminum matrix composite powders,” International Journal of Materials Research, 106 (6), 636-640, 2015.
[77]R.N. Gunn, Duplex stainless steels: microstructure, properties and applications, Woodhead Publishing, 1997.
[78]E. Park, B. Hüning, M. Spiegel, “Evolution of near-surface concentration profiles of Cr during annealing of Fe–15Cr polycrystalline alloy,” Applied surface science, 249 (1), 127-138, 2005.
[79]熊勝虎,楊榮春,吳丹菁,鄭東風,田民波,銀粉形貌與尺寸對導電膠電性能的影響,電子元件與材料, 24卷,08期,2005年。
[80]A.N. Lagarkov, K.N. Rozanov, “High-frequency behavior of magnetic composites,” Journal of Magnetism and Magnetic Materials, 321 (14), 2082-2092, 2009.
[81]唐傳明,馮永寶,邱泰,扁平化及退火溫度對 FeSiAl 合金吸波性能的影響,電子元件與材料,32卷,2期,43-46頁,2013年。
[82]H.J. Grabke, E.M. Muller-Lorenz, S. Strauss, E. Pippel, “Effects of grain size, cold working, and surface finish on the metal-dusting resistance of steels,” Oxidation of Metals, 50 (3), 241-254, 1998.
[83]G Xie, L. Yuan, P. Wang, B. Zhang, P. Lin, H. Lu, “GHz microwave properties of melt spun Fe–Si alloys,” Journal of Non-Crystalline Solids, 356 (2), 83-86, 2010.
[84]T.A. Lograsso, E.M. Summers, “Detection and quantification of D03 chemical order in Fe–Ga alloys using high resolution X-ray diffraction,” Materials Science and Engineering: A, 416 (1), 240-245, 2006.
[85]W.K. Jozwiak, E. Kaczmarek, T.P. Maniecki, W. Maniukiewicz, “Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres,” Applied Catalysis A: General, 326 (1), 17-27, 2007.
[86]V. Trindade, H.J. Christ, U. Krupp, “Grain-size effects on the high-temperature oxidation behaviour of chromium steels,” Oxidation of metals, 73 (5-6), 551-563, 2010.
[87]X. Zhang, Y. Niu, X. Meng, Y. Li, J. Zhao, “Structural evolution and characteristics of the phase transformations between α-Fe2O3, Fe3O4 and γ-Fe2O3 nanoparticles under reducing and oxidizing atmospheres,” CrystEngComm, 15 (40), 8166-8172, 2013.
[88]M.S.C Kumar, V. Selvam, M. Vadivel, “Synthesis and characterization of silane modified iron (III) oxide nanoparticles reinforced chitosan nanocomposites,” Eng. Sci. Adv. Technol, 2, 1258-1263, 2012.
[89]P.P. Hankare, V.T. Vader, U.B. Sankpal, R.P. Patil, A.V. Jadhav, I.S. Mulla, ”Synthesis and characterization of cobalt substituted zinc ferri-chromites prepared by sol–gel auto-combustion method,” Journal of Materials Science: Materials in Electronics 22 (8), 1109-1115, 2011.
[90]A. Adamczyk, E. Długoń, “The FTIR studies of gels and thin films of Al2O3–TiO2 and Al2O3–TiO2–SiO2 systems,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 89, 11-17, 2012.
[91]Q. Lei, Z. Li, M.P. Wang, L. Zhang, S. Gong, Z. Xiao, Z.Y. Pan, “Phase transformations behavior in a Cu–8.0 Ni–1.8 Si alloy,” Journal of Alloys and Compounds, 509 (8), 3617-3622, 2011.
[92]Q. Zhou, J. Zhao, H. Zhao, X. Zhang, “Oxidation Behaviors of DO3 Type Fe3Si Based Intermetallics at 900° C,” Advanced Materials Research, 146, 1904-1910, 2011.