簡易檢索 / 詳目顯示

研究生: 黃靖琳
Wong, Ching-Lam
論文名稱: 探討輕度認知功能障礙病患腦部與肌肉組織氧合之相關性分析
Correlation Between Cerebral and Muscle Oxygenation in Subjects with Mild Cognitive Impairment
指導教授: 陳家進
Chen, Jia-Jin
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 36
中文關鍵詞: 低頻率震盪近紅外光譜儀血管調控組織氧合度輕度認知障礙組織貫注
外文關鍵詞: Low-frequency oscillations (LFOs), Near-infrared spectroscopy (NIRS), Tissue oxygenation, Mild cognitive impairment, hypo-perfusion
相關次數: 點閱:152下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 輕度認知障礙是一種從正常認知功能轉變為失智的過渡階段。認知包含多種面向,例如記憶、專注、視覺空間功能、精神運作速度、語言及執行功能。由於腦部組織貫注不足可能是認知功能障礙的危險因子。近紅外光譜儀屬於一種非侵入性的血液動力學監測系統,其優點在於可以讓受測者在動態活動下即時監控帶氧及去氧血紅素之濃度變化。本研究目的在於分析有無輕度認知障礙的受測者在大腦前額區與大腿股外側肌的組織氧合度之相關性,並探討體能活動介入之影響,期望能為病患提供更多相關資訊。此外,有證據顯示體能活動與減少認知功能下降有關,但目前對此之證據仍然不足。實驗將分為兩個部分,第一部分受測者將分為有無輕度認知障礙,第二部分受側者將會進行為期三個月的體能活動介入,所有受測者皆透過重複的等長膝關節伸展運動下量測大腦前額區與大腿股外側肌的血氧變化。藉由頻譜分析(Welch’s method)歸納出三個主要的低頻段,其中包含:內皮細胞相關的血管調控(0.005-0.02 Hz)、交感神經支配下的血管調控(0.02-0.06 Hz)與血管平滑肌內的肌源性反應(0.06-0.15 Hz)。研究結果顯示輕度認知功能障礙病患前額葉與下肢肌肉組織有較明顯的內皮細胞活化活動。此可能顯示輕度認知功能障礙患有較差的氧合表現,需透過代償性的血管調控維持前額與肌肉組織間氧氣的傳遞與利用。同時,我們發現在無輕度認知功能障礙的組別中前額葉與肌肉在NIRS的頻譜有著顯著的相關性,相反的,在輕度認知功能障礙的組別中則沒有顯著的相關性。另一方面,相對於體能活動介入前,受測者在體能活動介入後,前額葉與肌肉在NIRS的頻譜有著顯著的相關性。以上結果顯示輕度認知功能障礙似乎會降低中樞和週邊組織之間的組織氧合相關性,而體能活動的介入似乎可以改善中樞和週邊組織之間的組織氧合相關性。本研究與相關研究文獻的表明一致認為經由探討血液動力學的訊號內頻率組成成分的改變,可以一窺相關疾病的致病機制,並在臨床實驗結果上指出身體活動和認知能力下降之間的反比關係。

    Mild cognitive impairment (MCI) is a transitional phase from normal cognitive function to dementia which influences many cognitive functions such as memory, attention, visuospatial skills, mental processing speed, language and executive function. Because cerebral hypo-perfusion is a risk factor for cognitive dysfunction, changes in tissue oxygenation may be involved in cognitive functions. Near-infrared spectroscopy (NIRS) has been developed as non-invasive method to monitor the concentration change of hemoglobin. However, there are insufficient data to show that the improvements in the cognitive function can be attributed to physical exercises. The purpose of this present study is to analyze the association of the tissue oxygenation between MCI and non-MCI groups and to investigate the effects of physical exercises. NIRS signals were obtained simultaneously from prefrontal cortex and vastus lateralis muscle for repeatedly isometric knee-extension measurement. Three dominant frequencies of low-frequency oscillations (LFOs) in NIRS signals related to endothelial activity (0.005-0.02 Hz), sympathetic innervation (0.02-0.06 Hz) and myogenic response (0.06-0.15 Hz) have been obtained from the Welch’s method. Our results suggested that the higher activity of endothelium might be related to compensate adequate oxygen for peripheral muscle and prefrontal cortex in MCI. Moreover, significant correlation between cerebral and muscle were found in the MCI groups, but not in the non-MCI groups from analysis of NIRS spectra. These results suggest that the impact of MCI seems to be detrimental for the interaction of tissue oxygenation between central and peripheral tissue. On the other hand, significant correlation between cerebral and muscle in subjects who had performed the exercise intervention were also found. These results suggest the improvements of cognitive function were attributed to physical exercises. Our study coincides with previous studies that changes in the spectral components of NIRS signal could provide some insights into pathogenic mechanisms of diseases. Our clinical evidences also indicated an inverse relationship between physical activity and cognitive decline.

    摘要 I Abstract II 致謝 IV Table of Contents VI List of Figures VIII List of Tables X Chapter 1 Introduction 1 1-1 Mild Cognitive Impairment 1 1-1-1 Assessment of Mild Cognitive Impairment 1 1-1-2 Vasomotion 3 1-1-3 Endothelial dysfunction in MCI 3 1-1-4 Cerebral hypo-perfusion 4 1-1-5 Physical activity on cognitive function 4 1-2 Near-infrared spectroscopy approach for investigating tissue oxygenation 5 1-2-1 Principles of near infrared spectroscopy 5 1-2-2 Detecting tissue oxygenation in MCI 7 1-3 Physiological fluctuations in hemodynamic signals 8 1-3-1 Low-frequency oscillations in vascular system 9 1-3-2 Alternation in LFOs for pathological condition 10 1-3-3 Evaluation of LFOs by using NIRS 10 1-4 Motivation and the aims of the study 11 Chapter 2 Materials and Methods 13 2-1 Subjects 13 2-2 NIRS recording 14 2-2-1 NIRS system 14 2-2-2 Measurement of cerebral and muscular oxygenation 15 2-3 Data analysis 17 2-3-1 Data acquisition in knee extension task 17 2-4 Physical activity program 19 2-4-1 Physical activity measurement 19 2-5 Statistical analysis 20 Chapter 3 Results 21 3-1 Tissue oxygenation oscillation during post-exercise recovery 21 3-2 Tissue oxygenation oscillation after exercise intervention 27 Chapter 4 Discussion and Conclusion 28 References 32

    Aalkjaer, C., Boedtkjer, D., & Matchkov, V. (2011). Vasomotion - what is currently thought? Acta Physiol (Oxf), 202(3), 253-269. doi: 10.1111/j.1748-1716.2011.02320
    Activity Monitors - SUZUKEN KENZ. from http://suzuken-kenz.com/products_activitymonitors.php
    Angevaren, M., Aufdemkampe, G., Verhaar, H. J., Aleman, A., & Vanhees, L. (2008). Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev(2), Cd005381. doi: 10.1002/14651858.CD005381.pub2
    Arai, H., Takano, M., Miyakawa, K., Ota, T., Takahashi, T., Asaka, H., & Kawaguchi, T. (2006). A quantitative near-infrared spectroscopy study: a decrease in cerebral hemoglobin oxygenation in Alzheimer's disease and mild cognitive impairment. Brain Cogn, 61(2), 189-194. doi: 10.1016/j.bandc.2005.12.012
    Baker, L. D., Frank, L. L., Foster-Schubert, K., Green, P. S., Wilkinson, C. W., McTiernan, A., . . . Craft, S. (2010). Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol, 67(1), 71-79. doi: 10.1001/archneurol.2009.307
    Bangsbo, J., & Hellsten, Y. (1998). Muscle blood flow and oxygen uptake in recovery from exercise. Acta Physiol Scand, 162(3), 305-312. doi: 10.1046/j.1365-201X.1998.0331e.x
    Boushel, R., Langberg, H., Olesen, J., Gonzales-Alonzo, J., Bulow, J., & Kjaer, M. (2001). Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease. Scand J Med Sci Sports, 11(4), 213-222.
    Buchel, C., & Friston, K. J. (1997). Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. Cereb Cortex, 7(8), 768-778.
    Doi, T., Makizako, H., Shimada, H., Park, H., Tsutsumimoto, K., Uemura, K., & Suzuki, T. (2013). Brain activation during dual-task walking and executive function among older adults with mild cognitive impairment: a fNIRS study. Aging Clin Exp Res, 25(5), 539-544. doi: 10.1007/s40520-013-0119-5
    Dong, Y., Lee, W. Y., Basri, N. A., Collinson, S. L., Merchant, R. A., Venketasubramanian, N., & Chen, C. L. (2012). The Montreal Cognitive Assessment is superior to the Mini-Mental State Examination in detecting patients at higher risk of dementia. Int Psychogeriatr, 24(11), 1749-1755. doi: 10.1017/s1041610212001068
    Farias, S. T., Mungas, D., Reed, B. R., Harvey, D., & DeCarli, C. (2009). Progression of mild cognitive impairment to dementia in clinic- vs community-based cohorts. Arch Neurol, 66(9), 1151-1157. doi: 10.1001/archneurol.2009.106
    Ganguli, M., & Petersen, R. C. (2008). Mild cognitive impairment: challenging issues. Am J Geriatr Psychiatry, 16(5), 339-342. doi: 10.1097/JGP.0b013e31816c3fdb
    Grammas, P. (2011). Neurovascular dysfunction, inflammation and endothelial activation: implications for the pathogenesis of Alzheimer's disease. J Neuroinflammation, 8, 26. doi: 10.1186/1742-2094-8-26
    Hamaoka, T., McCully, K. K., Quaresima, V., Yamamoto, K., & Chance, B. (2007). Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans. J Biomed Opt, 12(6), 062105. doi: 10.1117/1.2805437
    Humeau, A., Koitka, A., Abraham, P., Saumet, J. L., & L'Huillier, J. P. (2004). Spectral components of laser Doppler flowmetry signals recorded in healthy and type 1 diabetic subjects at rest and during a local and progressive cutaneous pressure application: scalogram analyses. Phys Med Biol, 49(17), 3957-3970.
    Huppert, T. J., Diamond, S. G., Franceschini, M. A., & Boas, D. A. (2009). HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain. Appl Opt, 48(10), D280-298.
    Kasten, M., Bruggemann, N., Schmidt, A., & Klein, C. (2010). Validity of the MoCA and MMSE in the detection of MCI and dementia in Parkinson disease. Neurology, 75(5), 478; author reply 478-479. doi: 10.1212/WNL.0b013e3181e7948a
    Kelleher, R. J., & Soiza, R. L. (2013). Evidence of endothelial dysfunction in the development of Alzheimer's disease: Is Alzheimer's a vascular disorder? Am J Cardiovasc Dis, 3(4), 197-226.
    Kito, H., Ryokawa, A., Kinoshita, Y., Sasayama, D., Sugiyama, N., Ogihara, T., . . . Amano, N. (2014). Comparison of alterations in cerebral hemoglobin oxygenation in late life depression and Alzheimer's disease as assessed by near-infrared spectroscopy. Behav Brain Funct, 10, 8. doi: 10.1186/1744-9081-10-8
    Kvandal, P., Landsverk, S. A., Bernjak, A., Stefanovska, A., Kvernmo, H. D., & Kirkeboen, K. A. (2006). Low-frequency oscillations of the laser Doppler perfusion signal in human skin. Microvasc Res, 72(3), 120-127. doi: 10.1016/j.mvr.2006.05.006
    Kvernmo, H. D., Stefanovska, A., Bracic, M., Kirkeboen, K. A., & Kvernebo, K. (1998). Spectral analysis of the laser Doppler perfusion signal in human skin before and after exercise. Microvasc Res, 56(3), 173-182. doi: 10.1006/mvre.1998.2108
    Li, Z., Zhang, M., Wang, Y., Wang, Y., Xin, Q., Li, J., & Lu, C. (2011). Wavelet analysis of sacral tissue oxygenation oscillations by near-infrared spectroscopy in persons with spinal cord injury. Microvasc Res, 81(1), 81-87. doi: 10.1016/j.mvr.2010.09.011
    Liu, H., & Zhang, J. (2012). Cerebral hypoperfusion and cognitive impairment: the pathogenic role of vascular oxidative stress. Int J Neurosci, 122(9), 494-499. doi: 10.3109/00207454.2012.686543
    Luckhaus, C., Flub, M. O., Wittsack, H. J., Grass-Kapanke, B., Janner, M., Khalili-Amiri, R., . . . Cohnen, M. (2008). Detection of changed regional cerebral blood flow in mild cognitive impairment and early Alzheimer's dementia by perfusion-weighted magnetic resonance imaging. Neuroimage, 40(2), 495-503. doi: 10.1016/j.neuroimage.2007.11.053
    Mitchell, T., Woodward, M., & Hirose, Y. (2008). A survey of attitudes of clinicians towards the diagnosis and treatment of mild cognitive impairment in Australia and New Zealand. Int Psychogeriatr, 20(1), 77-85. doi: 10.1017/s1041610207005583
    Nasreddine, Z. S., Phillips, N. A., Bedirian, V., Charbonneau, S., Whitehead, V., Collin, I., . . . Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc, 53(4), 695-699. doi: 10.1111/j.1532-5415.2005.53221.x
    Nilsson, H., & Aalkjaer, C. (2003). Vasomotion: mechanisms and physiological importance. Mol Interv, 3(2), 79-89, 51. doi: 10.1124/mi.3.2.79
    Niu, H. J., Li, X., Chen, Y. J., Ma, C., Zhang, J. Y., & Zhang, Z. J. (2013). Reduced frontal activation during a working memory task in mild cognitive impairment: a non-invasive near-infrared spectroscopy study. CNS Neurosci Ther, 19(2), 125-131. doi: 10.1111/cns.12046
    Obrig, H., Neufang, M., Wenzel, R., Kohl, M., Steinbrink, J., Einhaupl, K., & Villringer, A. (2000). Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults. Neuroimage, 12(6), 623-639. doi: 10.1006/nimg.2000.0657
    Palmer, K., Backman, L., Winblad, B., & Fratiglioni, L. (2008). Mild cognitive impairment in the general population: occurrence and progression to Alzheimer disease. Am J Geriatr Psychiatry, 16(7), 603-611. doi: 10.1097/JGP.0b013e3181753a64
    Patel, B. B., & Holland, N. W. (2012). Mild cognitive impairment: hope for stability, plan for progression. Cleve Clin J Med, 79(12), 857-864. doi: 10.3949/ccjm.79a.11126
    Petersen, R. C. (2011). Clinical practice. Mild cognitive impairment. N Engl J Med, 364(23), 2227-2234. doi: 10.1056/NEJMcp0910237
    Phan, T. G., & Bullen, A. (2010). Practical intravital two-photon microscopy for immunological research: faster, brighter, deeper. Immunol Cell Biol, 88(4), 438-444. doi: 10.1038/icb.2009.116
    Pober, J. S., Min, W., & Bradley, J. R. (2009). Mechanisms of endothelial dysfunction, injury, and death. Annu Rev Pathol, 4, 71-95. doi: 10.1146/annurev.pathol.4.110807.092155
    Rossi, M., Bertuglia, S., Varanini, M., Giusti, A., Santoro, G., & Carpi, A. (2005). Generalised wavelet analysis of cutaneous flowmotion during post-occlusive reactive hyperaemia in patients with peripheral arterial obstructive disease. Biomed Pharmacother, 59(5), 233-239. doi: 10.1016/j.biopha.2004.01.008
    Saltin, B., Radegran, G., Koskolou, M. D., & Roach, R. C. (1998). Skeletal muscle blood flow in humans and its regulation during exercise. Acta Physiol Scand, 162(3), 421-436. doi: 10.1046/j.1365-201X.1998.0293e.x
    Sassaroli, A., Pierro, M., Bergethon, P. R., & Fantini, S. (2012). Low-Frequency Spontaneous Oscillations of Cerebral Hemodynamics Investigated With Near-Infrared Spectroscopy: A Review. IEEE Journal of Selected Topics in Quantum Electronics, 18(4), 1478-1492. doi: 10.1109/JSTQE.2012.2183581
    Schroeter, M. L., Bucheler, M. M., Preul, C., Scheid, R., Schmiedel, O., Guthke, T., & von Cramon, D. Y. (2005). Spontaneous slow hemodynamic oscillations are impaired in cerebral microangiopathy. J Cereb Blood Flow Metab, 25(12), 1675-1684. doi: 10.1038/sj.jcbfm.9600159
    Schroeter, M. L., Schmiedel, O., & von Cramon, D. Y. (2004). Spontaneous low-frequency oscillations decline in the aging brain. J Cereb Blood Flow Metab, 24(10), 1183-1191. doi: 10.1097/01.wcb.0000135231.90164.40
    Shadgan, B. (2012). From Olympics to Optics. Washington: SPIE Professional.
    Soderstrom, T., Stefanovska, A., Veber, M., & Svensson, H. (2003). Involvement of sympathetic nerve activity in skin blood flow oscillations in humans. Am J Physiol Heart Circ Physiol, 284(5), H1638-1646. doi: 10.1152/ajpheart.00826.2000
    Standards of Medical Care in Diabetes—2013. (2013). Diabetes Care, 36(Supplement 1), S11-S66. doi: 10.2337/dc13-S011
    Stefanovska, A. (2007). Coupled oscillators. Complex but not complicated cardiovascular and brain interactions. IEEE Eng Med Biol Mag, 26(6), 25-29.
    Stefanovska, A., Bracic, M., & Kvernmo, H. D. (1999). Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique. IEEE Trans Biomed Eng, 46(10), 1230-1239.
    Suzuki, M., Miyai, I., Ono, T., Oda, I., Konishi, I., Kochiyama, T., & Kubota, K. (2004). Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study. Neuroimage, 23(3), 1020-1026. doi: 10.1016/j.neuroimage.2004.07.002
    Tarumi, T., Dunsky, D. I., Khan, M. A., Liu, J., Hill, C., Armstrong, K., . . . Zhang, R. (2014). Dynamic cerebral autoregulation and tissue oxygenation in amnestic mild cognitive impairment. J Alzheimers Dis, 41(3), 765-778. doi: 10.3233/jad-132018
    Tong, Y., & Frederick, B. D. (2010). Time lag dependent multimodal processing of concurrent fMRI and near-infrared spectroscopy (NIRS) data suggests a global circulatory origin for low-frequency oscillation signals in human brain. Neuroimage, 53(2), 553-564. doi: 10.1016/j.neuroimage.2010.06.049
    Tsai, C. F., Lee, W. J., Wang, S. J., Shia, B. C., Nasreddine, Z., & Fuh, J. L. (2012). Psychometrics of the Montreal Cognitive Assessment (MoCA) and its subscales: validation of the Taiwanese version of the MoCA and an item response theory analysis. Int Psychogeriatr, 24(4), 651-658. doi: 10.1017/s1041610211002298
    Tuchin, V. V. (2002). Handbook of Optical Biomedical Diagnostics: Washington: SPIE Press.
    van Beek, A. H., Lagro, J., Olde-Rikkert, M. G., Zhang, R., & Claassen, J. A. (2012). Oscillations in cerebral blood flow and cortical oxygenation in Alzheimer's disease. Neurobiol Aging, 33(2), 428.e421-431. doi: 10.1016/j.neurobiolaging.2010.11.016
    Vendemiale, G., Romano, A. D., Dagostino, M., de Matthaeis, A., & Serviddio, G. (2013). Endothelial dysfunction associated with mild cognitive impairment in elderly population. Aging Clin Exp Res, 25(3), 247-255. doi: 10.1007/s40520-013-0043-8
    Wolf, M., Ferrari, M., & Quaresima, V. (2007). Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications. J Biomed Opt, 12(6), 062104. doi: 10.1117/1.2804899
    Wood, J. N., & Grafman, J. (2003). Human prefrontal cortex: processing and representational perspectives. Nat Rev Neurosci, 4(2), 139-147. doi: 10.1038/nrn1033

    下載圖示 校內:2021-08-26公開
    校外:2021-08-26公開
    QR CODE