簡易檢索 / 詳目顯示

研究生: 林盈棟
Lin, Ying–Dong
論文名稱: 探討錳及碳對低碳鋼中初析肥粒鐵形成之影響
Effects of Manganese and Carbon on Formation of Proeutectoid Ferrite in Low Carbon Steels
指導教授: 郭瑞昭
Kuo, Jui-Chao
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 116
中文關鍵詞: 初析肥粒鐵Ar3溫度橫向裂紋高溫紫光共聚焦顯微鏡
外文關鍵詞: Proeutectoid ferrite, Ar3 temperature, Transverse crack, HT-CSLM
相關次數: 點閱:75下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 低碳鋼在連續鑄造中形成橫向裂紋仍然是一大難題,先前研究提出提升模具振動頻率或控制鑄胚表面之顯微結構降低橫向裂紋形成,但橫向裂紋於次表面處仍被發現,因肥粒鐵在高溫時相對脆弱,特別是片狀肥粒鐵,連續鑄造之矯直過程中應變常集中於此,易形成橫向裂紋,由過去文獻指出,添加其他元素會影響初析肥粒鐵生成溫度及速率,進而改變表面形貌,因此探討高溫時不同元素添加對肥粒鐵形成之影響。
    本研究針對以不同錳含量及碳含量對初析肥粒鐵形成之影響,首先設計三組不同錳含量(0.2、1.1、2.0 wt%)及碳含量(0.046、0.15、0.25 wt%)之低碳鋼試片,待熔煉鑄造取樣完成後,藉由熱膨脹儀在固定的冷卻速率下量測相變態溫度,後續再使用高溫紫光雷射共聚焦顯微鏡觀測初析肥粒鐵顯微組織演化之過程,分析錳含量及碳含量對肥粒鐵生成速率之影響,最後藉由熱處理製備表面相比例為10%初析肥粒鐵之試片,觀察初析肥粒鐵形貌,以及統計尺寸分析。
    實驗結果顯示,隨著錳含量由0.2增加至2.0 wt%,以及碳含量由0.046增加至0.25 wt%,均會造成初析肥粒鐵之相變態溫度下降,同時錳含量與碳含量會影響初析肥粒鐵之厚度。當錳含量上升時,初析肥粒鐵生成速率亦隨之下降,使生長趨緩 ; 當碳含量上升時,初析肥粒鐵生成速率隨之下降,也亦使生長趨緩。隨著錳含量上升時,初析肥粒鐵之平均長寬比由2.42降至1.94 ; 碳含量上升時,初析肥粒鐵之平均長寬比由2.42降至2.15,結果指出當錳以及碳含量減少時,具有較多含量之初析肥粒鐵朝片狀形貌發展,造成矯直過程中產生橫向裂紋。

    Transverse cracks in low carbon steel, which are perpendicular to the casting direction in straightening, are still a major problem in continuous casting. The previous works showed that the formation of transverse cracks can be suppressed by increasing oscillation frequency in casting mold. However, transverse cracks are still found at the depth of about 2 to 15 mm below the surface, which especially are influenced by proeutectoid ferrites. Therefore, this work studied the effect of manganese and carbon content on the formation of proeutectoid ferrite at high temperature. The experimental materials are manganese content of 0.23, 1.1 and 2.0 wt% together with carbon content of 0.046, 0.15 and 0.25 wt%. Firstly, Ar3 and Ar1 temperatures were measured by using DIL802. Secondly, In-situ morphology of proeutectoid ferrite was observed during phase transformation from austenite to ferrite with HT-CSLM. Thirdly, OM and ImageJ software was used to analyze the morphology and size statistics of proeutectoid ferrite on sample surface.
    In the first part, as the manganese content increased from 0.23 to 2.04 wt%, the Ar_3 temperature decreased from 889℃ to 763℃.When carbon content increased from 0.046 to 0.25 wt%, the Ar3 temperature decreased from 889℃ to 809℃. In the second part, initial growth rate increased from 8.99∙10^(-6) μm/s to 1.13∙10^(-5) μm/s when manganese content increased from 0.23 to 2.04 wt%, moreover, when the carbon content increased from 0.046 to 0.25 wt%, the initial growth rate decreased from 8.99∙10^(-6) to 1.41∙10^(-6) μm/s during phase transformation of austenite. In the third part, as the manganese content increased from 0.23 wt% to 2.04 wt%, the average aspect ratio of proeutectoid ferrite decreased from 2.42 to 1.94. As the carbon content was increased from 0.046 to 0.25 wt%, the average aspect ratio of proeutectoid ferrite decreased from 2.42 to 1.94. The results show the film-like proeutectoid ferrite can be reduced by increasing the content of manganese and carbon.

    目錄 中文摘要 I Extended Abstract III 誌謝 XV 目錄 XIX 表目錄 XXII 圖目錄 XXIV 第一章 前言 1 第二章 文獻回顧 3 2.1 橫向裂紋形成 3 2.2 初析肥粒鐵形成機制 14 2.3 溫度對初析肥粒鐵形成之影響 20 2.4 冷卻速率對初析肥粒鐵形成之影響 27 第三章 材料與實驗方法 32 3.1 實驗材料之熔煉與成分分析 32 3.1.1 原合金成分設計 32 3.1.2 熔煉鑄造與試片成分分析 33 3.1.3 試片取樣與製備 40 3.1.4 初析肥粒鐵之製備 45 3.2 DIL相變態溫度之量測 47 3.3高溫紫光雷射共聚焦顯微鏡之分析 53 3.4初析肥粒鐵相比例之分析 56 3.5初析肥粒鐵形貌分析 61 第四章 實驗結果 67 4.1 DIL相變態溫度 67 4.2 高溫雷射共聚焦顯微鏡相變態分析 72 4.3初析肥粒鐵相比例之分析 80 4.4初析肥粒鐵形貌及尺寸統計分析 91 第五章 討論 98 5.1 錳元素對相變態溫度之影響 98 5.2碳元素對相變態溫度之影響 100 5.3錳元素對初析肥粒鐵生成速率之影響 104 5.4碳元素對初析肥粒鐵生成速率之影響 108 第六章 結論 111 參考文獻 112 Curriculum vitae 116

    1. Parker, G., Encyclopedia of materials: science and technology, 2001.
    2. Siegfried, J., Apparatus for continuous casting processes, United States Patent Office, 1940.
    3. Mintz, B., S. Yue, and J. Jonas, Hot ductility of steels and its relationship to the problem of transverse cracking during continuous casting, International Materials Reviews, 1991, 36, 187-220.
    4. Lai, Q., Gouné, M., Perlade, A., Pardoen, T., Jacques, P., Bouaziz, O., and Bréchet, Y, Mechanism of austenite formation from spheroidized microstructure in an intermediate Fe-0.1 C-3.5 Mn steel, Metallurgical and Materials Transactions A, 2016, 47, 3375-3386.
    5. Li, Y. F., Wen, G. H., Ping, T. A. N. G., Li, J. Q., and Xiang, C. L., Effect of slab subsurface microstructure evolution on transverse cracking of microalloyed steel during continuous casting, Journal of Iron and Steel Research, International, 2014, 21, 737-744.
    6. Maehara, Y., et al., Surface cracking mechanism of continuously cast low carbon low alloy steel slabs, Materials Science and Technology, 1990, 6, 793-806.
    7. Mintz, B. and J. Arrowsmith, Hot-ductility behaviour of C–Mn–Nb–Al steels and its relationship to crack propagation during the straightening of continuously cast strand, Metals technology, 1979, 6, 24-32.
    8. Suzuki, H. G., Nishimura, S., Imamura, J., & Nakamura, Y., Embrittlement of Steels Occurring in the Temperature Range from 1 000 to 600 C, Transactions of the Iron and Steel Institute of Japan, 1984, 24, 169-177.
    9. Takeuchi, E. and J. Brimacombe, Effect of oscillation-mark formation on the surface quality of continuously cast steel slabs, Metallurgical Transactions B, 1985, 16, 605-625.
    10. Ma, F. J., Wen, G. H., Tang, P., Yu, X., Li, J. Y., Xu, G. D., & Mei, F., Causes of transverse corner cracks in microalloyed steel in vertical bending continuous slab casters, Ironmaking and Steelmaking, 2010, 37, 73-79.
    11. Groβheim, H., K. Schotten, and W. Bleck, Physical simulation of hot rolling in the ferrite range of steels, Journal of Materials Processing Technology, 1996, 60, 609-614.
    12. Kato, T., Ito, Y., Kawamoto, M., Yamanaka, A., & Watanabe, T., Prevention of slab surface transverse cracking by microstructure control, ISIJ international, 2003, 43, 1742-1750.
    13. Brimacombe, J. and K. Sorimachi, Crack formation in the continuous casting of steel, Metallurgical transactions B, 1977, 8, 489-505.
    14. Callister, W.D. and D.G. Rethwisch, Materials science and engineering: an introduction, Wiley New York, 2018.
    15. Reed-Hill, R.E., R. Abbaschian, and R, Abbaschian, Physical metallurgy principles, Van Nostrand New York, 1973.
    16. Zhao, S., Wei, D., Li, R., and Zhang, L., Effect of cooling rate on phase transformation and microstructure of Nb–Ti microalloyed steel, Materials Transactions, 2014.
    17. Krielaart, G. and S. Van der Zwaag, Simulations of pro-eutectoid ferrite formation using a mixed control growth model, Materials Science and Engineering: A, 1998, 246, 104-116.
    18. Krielaart, G. and S.v.d. Zwaag, Kinetics of γ→ α phase transformation in Fe-Mn alloys containing low manganese, Materials science and technology, 1998, 14, 10-18.
    19. Xing, L., Fan, X., Wang, M., Zhao, L., & Bao, Y., The formation mechanism of proeutectoid ferrite on medium-carbon sulfur-containing bloom, Metallurgical and Materials Transactions B, 2021, 52, 3208-3219.
    20. Gilmour, J., G. Purdy, and J. Kirkaldy, Thermodynamics controlling the proeutectoid ferrite transformations in Fe-C-Mn alloys, Metallurgical Transactions, 1972, 3, 1455-1464.
    21. Záhumenský, P., I. Kohútek, and J. Semeňák, Austenite–ferrite transformation temperature regression equations for low carbon steels with cooling rate account, in IOP Conference Series: Materials Science and Engineering, 2017.
    22. Liu, J., G. Wen, and P. Tang, Study of Ferrite During Refinement of Prior Austenite Grains in Microalloyed Steel Continuous Casting, Metallurgical and Materials Transactions B, 2017. 48, 3074-3082.
    23. Williamson, R. L., Melgaard, D. K., Shelmidine, G. J., Beaman, J. J., & Morrison, R., Model-based melt rate control during vacuum arc remelting of alloy 718, Metallurgical and Materials Transactions B, 2004, 35, 101-113.
    24. Matlock, D. K., Kang, S., De Moor, E., & Speer, J. G., Applications of rapid thermal processing to advanced high strength sheet steel developments, Materials Characterization, 2020. 166, 110397.
    25. Gaskell, D.R. and D.E. Laughlin, Introduction to the Thermodynamics of Materials, CRC press, 2017.
    26. Eldis, G.T., A critical review of data sources for isothermal transformation and continuous cooling transformation diagrams, Hardenability Concepts with Applications to Steel, 1977, 126-157.
    27. Chikama, H., Shibata, H., Emi, T., & Suzuki, M., “In-situ” real time observation of planar to cellular and cellular to dendritic transition of crystals growing in Fe–C alloy melts, Materials Transactions, JIM, 1996, 37, 620-626.
    28. Mu, W., Hedström, P., Shibata, H., Jönsson, P. G., and Nakajima, K., High-temperature confocal laser scanning microscopy studies of ferrite formation in inclusion-engineered steels: a review, JOM, 2018. 70, 2283-2295.
    29. Bacalhau, J.B. and C.R.M. Afonso, Effect of Ni addition on bainite microstructure of low-carbon special bar quality steels and its influence on CCT diagrams, Journal of Materials Research and Technology, 2021, 15, 1266-1283.
    30. Morito, S., Saito, H., Ogawa, T., Furuhara, T., & Maki, T., Effect of austenite grain size on the morphology and crystallography of lath martensite in low carbon steels, ISIJ international, 2005, 45, 91-94.
    31. Zhu, J., Sun, X., Barber, G., Han, X., & Qin, H., Effect of Carbon Content on Bainite Transformation Kinetics and Microstructure of 4140/4150 Steels.
    32. Gilmour, J.B., The role of manganese in the formation of proeutectoid ferrite. 1970.
    33. Murakami, T., Hatano, H., Miyamoto, G., & Furuhara, T., Effects of ferrite growth rate on interphase boundary precipitation in V microalloyed steels, ISIJ international, 2012, 52, 616-625.
    34. Zener, C., Theory of growth of spherical precipitates from solid solution, Journal of applied physics, 1949, 20, 950-953.
    35. Enomoto, M., Influence of solute drag on the growth of proeutectoid ferrite in Fe–C–Mn alloy, Acta materialia, 1999, 47, 3533-3540.
    36. Gamsjäger, E., J. Svoboda, and F.D. Fischer, Austenite-to-ferrite phase transformation in low-alloyed steels, Computational materials science, 2005. 32, 360-369.

    無法下載圖示 校內:2027-06-30公開
    校外:2027-06-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE