簡易檢索 / 詳目顯示

研究生: 梁伯維
Liang, Po-Wei
論文名稱: 450mm晶圓在快速與閃光燈熱退火下之形變行為
The deformation behavior of 450mm wafer under RTA/FLA
指導教授: 周榮華
Chou, Jung-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 133
中文關鍵詞: 有限元素分析450mmRTAFLA單一因子實驗法田口式實驗法
外文關鍵詞: Finite element analysis, 450mm wafer, RTA, FLA, Single factor experiment, Taguchi experiment
相關次數: 點閱:109下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以ANSYS對未來的450mm晶圓快速熱退火 (Rapid Thermal Annealing)與閃光燈熱退火 (Flash Lamp Annealing)製程,進行模擬分析之研究。模擬450mm晶圓在理想RTA製程中快速加熱10秒,溫度由22°C上升到1000°C;與在理想FLA製程中快速加熱1毫秒,溫度從600°C上升到1200°C,並針對晶圓受熱後之形變、應變、上中下層最大應力與應變向量等結果做比較探討。
    由模擬結果可發現450mm晶圓在閃光燈熱退火中之形變、應變與應力值皆較小,且加熱時間與製程時間都是更快速的,故選擇FLA為450mm晶圓熱退火之較佳製程,並進行實驗設計法之後續優化探討,選定晶圓厚度、晶圓背面溫度、熱通量時間、熱通量大小為實驗因子,搭配單一因子法與田口式實驗法,進一步分析四控制因子在三水準中之優劣比較。結果可發現影響FLA製程熱通量時間對形變、上層最大應力、中間層最大應力之影響最劇;而熱通量大小對FLA應變值、下層最大應力影響最劇;晶圓背溫與晶圓厚度對FLA之形變、應變與應力之影響較小。
    本文分析熱退火製程、選定較佳之熱製程並優化其製程因子,希望為日後450mm世代之製程建立一參考依據。

    Due to the fast development of semiconductor manufacturing in recent years, the industry is facing the challenge of small gate widths and large wafer sizes.
    In this study, finite element analysis (ANSYS) of transient models was used to explore the behavior of the 450mm wafer under Rapid Thermal Annealing (RTA) and Flash Lamp Annealing (FLA). By comparing the results of wafer deformation, strain and stress, FLA is selected as more suitable for the 450mm annealing process, and was further investigated by using the single factor and Taguchi experiments to optimize the FLA process. The process parameters include wafer thickness, wafer backside temperature, heat flux time, and heat flux value with the goal of achieving the smaller the best of wafer deformation, strain, and stress.
    The results show that for FLA, heat flux time is the most influential factor on the deformation, and the stress of the upper and middle layers are; heat flux has the greatest effect on the strain and the lower layer stress. The effect of backside temperature and wafer thickness on the deformation, strain and stress of FLA is not significant; the wafer thickness is the least effective factor.
    FLA process parameters for the 450mm wafer are also optimized by the Taguchi method.

    摘要II Extended Abstract III 致謝X 目錄 XI 表目錄XIV 圖目錄XV 符號說明XX 第一章 緒論 1 1-1 前言1 1-2 研究動機與目的4 1-3 文獻回顧5 1-4 論文架構23 第二章 理論基礎24 2-1 晶圓與熱退火概述24 2-1.1 晶圓發展概述24 2-1.2 快速熱退火(RTA)製程概述27 2-1.3 閃光燈熱退火(FLA)製程概述28 2-2有限元素分析法29 2-3熱輻射方程式31 2-4結構分析數值理論32 2-5田口方法介紹34 2-5-1直交表35 2-5-2訊號與雜訊比35 2-5-3因子反應分析37 2-5-4變異分析37 第三章 研究方法與模擬設置40 3-1 ANSYS有限元素分析軟體介紹40 3-2 快速熱退火RTA製程42 3-2-1前處理42 3-2-2有限元素分析49 3-2-3後處理55 3-3 閃光燈熱退火FLA製程56 3-3-1前處理56 3-3-2有限元素分析57 3-3-3後處理61 第四章 結果與討論62 4-1 快速熱退火RTA模擬結果62 4-1-1 RTA溫度結果62 4-1-2 RTA形變結果65 4-1-3 RTA應力結果67 4-1-4 RTA上中下層應力結果70 4-1-5 RTA應變結果72 4-1-6 RTA應變向量結果74 4-2閃光燈熱退火FLA模擬結果76 4-2-1FLA溫度結果76 4-2-2FLA形變結果78 4-2-3FLA應力結果80 4-2-4FLA上中下層應力結果83 4-2-5FLA應變結果85 4-2-6FLA應變向量結果87 4-3 RTA與FLA結果比較89 4-4 單一因子實驗設計與結果91 4-5 田口式實驗設計與結果93 第五章 結論與建議107 5-1結論107 5-2建議108 參考文獻109

    [1]SEMATECH,http://www.sunycnse.com/LeadingEdgeResearchan
    dDevelopment/ResearchCentersPrograms/SEMATECH.aspx
    [2]Global 450 Consortium,https://prernajaindotme.wordpress.com/2012/09/09/global-450-consortium-g450c-program/
    [3]Ultrapure Water: http://www.waterworld.com/articles/iww/print/volume-15/issue-5/features/ultrapure-water-transitioning-to-the-450-mm-wafer-semiconductor-fab.html
    [4] Dilhac, J., Nolhier, N., Ganibal, C., & Zanchi, C. Thermal modeling of a wafer in a rapid thermal processor. IEEE transactions on semiconductor manufacturing, 8(4), 432-439,(1995).
    [5] Schaper, C. D., Moslehi, M. M., Saraswat, K. C., & Kailath, T. Modeling, identification, and control of rapid thermal processing systems. Journal of the Electrochemical Society, 141(11), 3200-3209,(1994).
    [6] Schaper, C. D., Cho, Y. M., & Kailath, T. Low-order modeling and dynamic characterization of rapid thermal processing. Applied Physics A: Materials Science & Processing, 54(4), 317-326,(1992).
    [7] Lord, H. A. Thermal and stress analysis of semiconductor wafers in a rapid thermal processing oven. IEEE Transactions on Semiconductor Manufacturing, 1(3), 105-114,(1988).
    [8] Buller, J. F., Farahani, M. M., & Garg, S. Manufacturing issues related to RTP induced overlay errors in a global alignment stepper technology. IEEE transactions on semiconductor manufacturing, 9(1), 108-114,(1996).
    [9] Hebb, J. P., & Jensen, K. F. The effect of patterns on thermal stress during rapid thermal processing of silicon wafers. IEEE Transactions on Semiconductor Manufacturing, 11(1), 99-107,(1998).

    [10] Storbeck, O., Ganz, D., Stadmuller, M., Frigge, S., Lerch, W., Graef, D., & Obermeier, G. Influence of RTP flash anneal ramp rates on lithography overlay performance on 300 mm integrated wafers. In Ion Implantation Technology, 2000. Conference on (pp. 159-162). IEEE.(2000).
    [11] Lin, S., & Chu, H. S. Thermal uniformity of 12-in silicon wafer during rapid thermal processing by inverse heat transfer method. IEEE transactions on semiconductor manufacturing, 13(4), 448-456.(2000).
    [12] 紀崇仁."晶圓快速熱處理模擬." 成功大學機械工程學系學位論文,1-72,(2002).
    [13] 侯明鋒."快速熱處理時的晶圓溫度均勻性." 成功大學機械工程學系學位論文, 1-138,(2003).
    [14] 林清萬."偏心旋轉機構應用在RTP快速熱處理製程之研究".國立彰化師範大學機電工程系學位論文,1-88,(2007).
    [15] Kui, T. F., Ying, T., Siong, H. K., & Nioh, K. Radiance RTP wafer out of pocket alarm influenced by preheat recipe. In Semiconductor Electronics, 2008. ICSE 2008. IEEE International Conference on (pp. 614-618). IEEE.(2008).
    [16] Owen, D. M., Wang, Y., Hawryluk, A., Zhou, S., & Hebb, J. Characterization of deformation induced by micro-second laser anneal using CGS interferometry. In Advanced Thermal Processing of Semiconductors, 2008. RTP 2008. 16th IEEE International Conference on (pp. 127-133). IEEE.(2008).
    [17] 賴建和. "450mm 晶圓在快速熱處理製程時溫度均勻性之研究." 成功大學航空太空工程學系學位論文,1-62,(2009).
    [18] Shepard, J. F., Muth, W. A., & MacNish, S. Experimental investigation of the rapid thermal process slip window. In Advanced Thermal Processing of Semiconductors (RTP), 2010 18th International Conference on (pp. 28-31). IEEE.(2010).

    [19] Higuchi, N., Matsumura, H., Watanabe, S., & Shishiguchi, S. Prediction of slip generation during rapid thermal processing. In Semiconductor Manufacturing (ISSM), 2010 International Symposium on (pp. 1-4). IEEE.(2010).
    [20] Tong, W., Krishnan, B., Kim, S., Vatel, O., Liu, X., Huang, L. & Benyon, P. Experimental investigation and manufacturing solution of the rapid thermal process induced overlay residue. In Advanced Semiconductor Manufacturing Conference (ASMC), 2012 23rd Annual SEMI (pp. 300-304). IEEE.(2012) .
    [21] Ito, T., Iinuma, T., Murakoshi, A., Akutsu, H., Suguro, K., Arikado, T., ... & Murayama, H. 10–15 nm ultrashallow junction formation by flash-lamp annealing. Japanese journal of applied physics, 41(4S), 2394.(2002).
    [22] Habuka, H., Hara, A., Karasawa, T., & Yoshioka, M. Heat transport analysis for flash lamp annealing. Japanese journal of applied physics, 46(3R), 937.(2007).
    [23] Prucnal, S., Sun, J. M., Muecklich, A., & Skorupa, W. Flash lamp annealing vs rapid thermal and furnace annealing for optimized metal-oxide-silicon-based light-emitting diodes. Electrochemical and solid-state letters, 10(2), H50-H52.(2007) .
    [24] McMahon, R. A., Smith, M. P., Seffen, K. A., Voelskow, M., Anwand, W., & Skorupa, W. Flash-lamp annealing of semiconductor materials—applications and process models. Vacuum, 81(10), 1301-1305.(2007).
    [25] Habuka, H., Kasahara, Y., & Hara, A. Heat transport and temperature gradient in silicon-on-insulator wafer during flash lamp annealing process. Japanese Journal of Applied Physics, 47(8R), 6277.(2008) .
    [26] Reichel, D., Skorupa, W., Lerch, W., & Gelpey, J. C. Temperature measurement in rapid thermal processing with focus on the application to flash lamp annealing. Critical Reviews in Solid State and Materials Sciences, 36(2), 102-128.(2011).

    [27] Peschel, T., Kalkowski, G., & Eberhardt, R. Influence of thermal load on 450 mm Si-wafer IPD during lithographic patterning. In SPIE Advanced Lithography (pp. 83230J-83230J). International Society for Optics and Photonics.(2012).
    [28] Yao, S. K., Xu, D. H., Xiong, B., & Wang, Y. L. The plastic and creep behavior of silicon microstructure at high temperature. In Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013 Transducers & Eurosensors XXVII: The 17th International Conference on (pp. 159-162). IEEE.(2013).
    [29] Gebel, T., Voelskow, M., Skorupa, W., Mannino, G., Privitera, V., Priolo, F., ... & Carnera, A. Flash lamp annealing with millisecond pulses for ultra-shallow boron profiles in silicon. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 186(1), 287-291.(2002).
    [30] Tanimura, H., Kawarazaki, H., Fuse, K., Abe, M., Yamada, T., Ono, Y., ... & Kato, S. 10 nm-deep n+/p and p+/n Ge junctions with high activation formed by ion implantation and Flash Lamp Annealing (FLA). In Junction Technology (IWJT), 2016 16th International Workshop on (pp. 77-80). IEEE.(2016) .
    [31] Lee, Huei-Huang. Finite element simulations with ANSYS workbench 16. SDC publications (2015).
    [32]李輝煌. "田口方法-品質設計的原理與實務." 高立圖書有限公司, 台北市(2000).
    [33]Future Timeline, http://www.futuretimeline.net/subject/computers-internet.htm
    [34]全球半導體觀察 DRAMeXchange, http://www.dramx.com/Performance/Post/4/8369.html
    [35]Vantage® Radiance®Plus RTP | Applied Materials, http://www.appliedmaterials.com/zh-hant/products/vantage-radianceplus-rtp
    [36]System for Precise Surface-temperature Monitoring of a Rapidly Heated and Cooled Wafer,
    http://www.aist.go.jp/aist_e/list/latest_research/2010/20100413/20100413.html

    下載圖示 校內:2020-07-01公開
    校外:2020-07-01公開
    QR CODE