簡易檢索 / 詳目顯示

研究生: 宋文忠
Sung, Wen-chung
論文名稱: 壓電噴墨技術於軟性基材製備導電結構之研究
Fabrication of Conductive Pattern on Flexible Substrate Using Inkjet Printing Technique
指導教授: 黃文星
Hwang, Weng-sing
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 89
中文關鍵詞: 微液滴噴印技術電阻率導線硝酸銀水溶液軟性基板
外文關鍵詞: flexible substrate, silver nitrate, resistivity, conductive line, Ink jet printing
相關次數: 點閱:85下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微液噴墨技術具有大量生產、低成本、製程富彈性、材料使用率高及不需光罩等優點,噴墨技術於電子產業之應用上逐漸吸引矚目。因此,近年來,壓電噴印技術於軟性電子具有應用前景及價值。
    本實驗利用壓電噴印技術於軟性基板polyimide上製備各式圖樣。所使用之金屬前驅物為硝酸銀水溶液,此溶液濃度為45 wt%,以及poly(N-vinyl-2-pyrrolidone)濃度為2 wt%;當壓電噴墨頭接收到雙脈衝訊號後,即可噴射形成單一顆液滴;液滴覆著於基板後,於常溫壓下進行乾燥;最後,還原出導電圖形於基材上方。為了獲得均勻成形之導線,基板需利用紫外線臭氧乾式清理成親水性表面性質。噴印之導線是否均勻成形,則受基板移動速度、液滴間距、基板溫度、燒結溫度及氣氛所影響。
    觀察噴印結果發現,於基板溫度30及50oC,液滴間距20至50 µm下,可得到之線寬介於45至60 µm之間。最佳噴印品質可於噴印條件:基板溫度30oC、基板移動速度1 mm/ s及液滴間距30 µm,乾燥後圖形於乙二醇蒸氣經300oC處理20分鐘還原後,獲得均勻線寬100 µm之導線,最佳電阻率為3.4 x 10-5 Ω•cm。

    The advantages of drop-on-demand ink jet printing include mass production, low cost, flexibility, high ink utility rate and without using mask. Therefore, ink jet printing is one of the most promising techniques to fabricate conductive patterns in flexible electronic industry.
    Continuous and uniform micro-conductive lines, printed on flexible polyimide substrate, without formation of bulges produced by the operation of drop-on-demand piezoelectric ink jet printing technique were investigated in this study. Silver nitrate water-based solution of 45 wt% concentration, which also contains 2 wt% of poly(N-vinyl-2-pyrrolidone), were employed as a metal precursor for metallization. Drops were formed by using bipolar pulse. The printed patterns were dried under room temperature and normal pressure condition. In order to obtain a hydrophilic surface, an ultraviolet (UV)/ozone (O3) treatment was carried out to clean polyimide substrate. Influence of operating parameters on uniform tracks formation includes substrate moving velocity, substrate temperature, dot-spacing, curing temperature and curing atmosphere. The uniform dots and continuous lines were produced at substrate temperature of 30 and 50oC in dotspacings from 20 to 50 µm; the diameter of dots was about 60 µm and the width of lines ranged from 45-60 µm.
    The experimental results show that the resistivity of conductive tracks under substrate moving velocity with1 mm/s, substrate temperature of 30oC and dotspacing of 30µm is 3.4 x 10-5 Ω•cm with line width of 100 µm, which is one order higher than bulk silver. This value of resistivity was achieved by using ethylene glycol vapor reduction method at curing temperature of 300oC for 20 minute.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VII 符號對照表X 第一章 前言 1 第二章 文獻回顧 3 2-1 直接輸出技術 3 2-1-1 能量束沉積技術 3 2-1-2 探針沉積技術 4 2-1-3 外加電場驅動液體沉積技術 4 2-1-4 微液滴噴墨技術 5 2-2 微液滴噴墨技術種類 5 2-3 噴墨材料的選擇 6 2-3-1 金屬前驅物溶液 6 2-3-2 奈米懸浮溶液 7 2-3-3 熔融金屬 7 2-3-4 其他噴墨材料 8 2-4 壓電噴墨技術原理 8 2-5 液滴飛行型態 10 2-6 噴印品質控制與熱處理 11 2-6-1 液滴撞擊基板 11 2-6-2 基板之親疏水性 12 2-6-3 噴覆點之成形 13 2-6-4 噴覆圖形之乾燥 14 2-6-5 噴覆圖形之熱處理 16 2-7 噴墨遭遇的問題 17 2-7-1 噴嘴口周圍沾墨之影響 17 2-7-2 微液滴形成過程之捲氣影響 17 第三章 實驗方法及步驟 27 3-1 實驗設備 27 3-2 實驗材料與參數設定 28 3-2-1 實驗溶液 28 3-2-2 基板與前處理 28 3-2-3 噴墨參數設定 28 3-2-4 熱處理 29 3-3 電性量測 29 3-4 實驗方法與流程 30 第四章 結果與討論 36 4-1 液滴觀測 36 4-2 噴覆點與蒸發速度 37 4-3 導線成形性 39 4-3-1 液滴間距與導線成形性 39 4-3-2 基板移動速度與導線成形性 40 4-3-3 基板溫度與導線成形性 40 4-4 電性量測 41 4-4-1 薄膜電性量測 41 4-4-2 導線電性量測 43 4-5 熱處理與導線寬度 45 第五章 結論 85 參考文獻 87

    [1]J.A. Lewis and G.M. Gratson, “Direct writing in three dimensions”, Materials Today, 7, 2004, p 32-39
    [2]Y.F. Guan and A.J. Pedraza, “Synthesis and alignment of Zn and ZnO nanoparticles by laser-assisted chemical vapor deposition”, Nanotechnology, 19, 2008, p 045609
    [3]A. Klini, P.A. Loukakos, D. Gray, A. Manousaki and C. Fotakis, “Laser induced forward transfer of metals by temporally shaped femtosecond laser pulses”, Optics Express, 16, 2008, p 11300-11309
    [4]L.M. Wee and L. Li, “Multiple-layer laser direct writing metal deposition in electrolyte solution”, Applied Surface Science, 247, 2005, p 285-293
    [5]M.C. George, A. Mohraz, M. Piech, N.S. Bell, J.A. Lewis and P.V. Braun, “Direct laser writing of photoresponsive colloids for microscale patterning of 3D porous structures”, Advanced Materials, 21, 2009, p 66-70
    [6]K.K.B. Hon, L. Li and I.M. Hutchings, “Direct writing technology-Advances and developments”, CIRP Annals - Manufacturing Technology, 57, 2008, p 601-620
    [7]R.D. Piner, J. Zhu, F. Xu, S. Hong and C.A. Mirkin, “'Dip-Pen' nanolithography”, Science, 283, 1999, p 661-663
    [8]J.H. Lim and C.A. Mirkin, “Electrostatically driven Dip-pen nanolithography of conducting polymers”, Advanced Materials, 14, 2002, p 1474-1477
    [9]K.B. Lee, S.J. Park, C.A. Mirkin, J.C. Smith and M. Mrksich, “Protein nanoarrays generated by dip-pen nanotithography”, Science, 295, 2002, p 1702-1705
    [10]J.U. Park, M. Hardy, S.J. Kang, K. Barton, K. Adair, D.K. Mukhopadhyay, C.Y. Lee, M.S. Strano, A.G. Alleyne, J.G. Georgiadis, P.M. Ferreira and J.A. Rogers, “High-resolution electrohydrodynamic jet printing”, Nature Materials, 6, 2007, p 782-789
    [11]J. Vaillancourt, H. Zhang, P. Vasinajindakaw, H. Xia, X. Lu, X. Han, D.C. Janzen, W.-S. Shih, C.S. Jones, M. Stroder, M.Y. Chen, H. Subbaraman, R.T. Chen, U. Berger and M. Renn, “All ink-jet-printed carbon nanotube thin-film transistor on a polyimide substrate with an ultrahigh operating frequency of over 5 GHz”, Applied Physics Letters, 93, 2008, p 243301
    [12]M.D. Croucher and M.L. Hair, “Design criteria and future directions in inkjet ink technology”, Industrial & Engineering Chemistry Research, 28, 1989, p 1712-1718
    [13]F. Xue, Z. Liu, Y. Su and K. Varahramyan, “Inkjet printed silver source/drain electrodes for low-cost polymer thin film transistors”, Microelectronic Engineering, 83, 2006, p 298-302
    [14]Z. Liu, Y. Su and K. Varahramyan, “Inkjet-printed silver conductors using silver nitrate ink and their electrical contacts with conducting polymers”, Thin Solid Films, 478, 2005, p 275-279
    [15]C.M. Hong and S. Wagner, “Inkjet printed copper source/drain metallization for amorphous silicon thin-film transistors”, IEEE Electron Device Letters, 21, 2000, p 384-386
    [16]C.C. Yang and S. Li, “Investigation of cohesive energy effects on size-dependent physical and chemical properties of nanocrystals”, Physical Review B, 75, 2007, p 165413
    [17]S.H. Ko, J. Chung, H. Pan, C.P. Grigoropoulos and D. Poulikakos, “Fabrication of multilayer passive and active electric components on polymer using inkjet printing and low temperature laser processing”, Sensors and Actuators, A: Physical, 134, 2006, p 161-168
    [18]B.J. De Gans, P.C. Duinevld and U.S. Schubert, “Inkjet printing of polymers: State of the art and future developments”, Advanced Materials, 16, 2004, p 203-213
    [19]R.E. Saunders, J.E. Gough and B. Derby, “Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing”, Biomaterials, 29, 2008, p 193-203
    [20]D.B. Bogy and F.E. Talke, “Experimental and theoretical study of wave propagation phenomena in drop-on-demand ink jet devices”, IBM Journal of Research and Development, 28, 1984, p 314-321
    [21]A.U. Chen and O.A. Basaran, “A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production”, Physics of Fluids, 14, 2002, p L1
    [22]H. Dong, W.W. Carr and J.F. Morris, “Visualization of drop-on-demand inkjet: Drop formation and deposition”, Review of Scientific Instruments, 77, 2006, p 085101
    [23]M.H. Tsai, W.S. Hwang, H.H. Chou and P.H. Hsieh, “Effects of pulse voltage on inkjet printing of a silver nanopowder suspension”, Nanotechnology, 19, 2008, p 335304
    [24]H. Dong, W.W. Carr and J.F. Morris, “An experimental study of drop-on-demand drop formation”, Physics of Fluids, 18, 2006, p 072102
    [25]T. Lim, S. Han, J. Chung, J.T. Chung, S. Ko and C.P.Grigoropoulos, “Experimental study on spreading and evaporation of inkjet printed pico-liter droplet on a heated substrate”, International Journal of Heat and Mass Transfer, 52, 2009, p 431-441
    [26]R. Rioboo, M. Marengo and C. Tropea, “Time evolution of liquid drop impact onto solid, dry surfaces”, Experiments in Fluids, 33, 2002, p 112-124
    [27]Y. Son, C. Kim, D.H. Yang and, D.J. Ahn, “Spreading of an inkjet droplet on a solid surface with a controlled contact angle at low weber and Reynolds numbers”, Langmuir, 24, 2008, p 2900-2907
    []T.H.J. Van Osch, J. Perelaer, A.W.M. De Laat and U.S. S28chubert, “Inkjet printing of narrow conductive tracks on untreated polymeric substrates”, Advanced Materials, 20, 2008, p 343-345
    [29]D.W. Moon, A. Kurokawa, S. Ichimura, H.W. Lee and I.C. Jeon, “Ultraviolet-ozone jet cleaning process of organic surface contamination layers”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 17, 1999, p 150-154
    [30]S.H. Lee, K.Y. Shin, J.Y. Hwang, K.T. Kang and H.S. Kang, “Silver inkjet printing with control of surface energy and substrate temperature”, Journal of Micromechanics and Microengineering, 18, 2008, p 075014
    [31]P.C. Duineveld , “The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate”, Journal of Fluid Mechanics, 477, 2003, p 175-200
    [32]E. Tekin, B.J. de Gans and U.S. Schubert, “Ink-jet printing of polymers - From single dots to thin film libraries”, Journal of Materials Chemistry, 14, 2004, p 2627-2632
    [33]A.M.J. van den Berg, A.W.M. de Laat, P.J. Smith, J. Perelaer and U.S. Schubert, “Geometric control of inkjet printed features using a gelating polymer”, Journal of Materials Chemistry, 17, 2006, p 677-683
    [34]H.C. Jung, S.H. Cho, J.W. Joung and Y.S. Oh, “Studies on inkjet-printed conducting lines for electronic devices”, Journal of Electronic Materials, 36, 2007, p 1211-1218
    [35]J. Park and J. Moon, “Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing”, Langmuir, 22, 2006, p 3506-3513
    [36]C.F. Madigan, T.R. Hebner, J.C. Sturm, R.A. Register and S. Troian, “Lateral dye distribution with ink-jet dye doping of polymer organic light emitting diodes”, Materials Research Society Symposium – Proceedings, 625, 2000, p 123-128
    [37]H. Hu and R.G. Larson, “Evaporation of a sessile droplet on a substrate”, Journal of Physical Chemistry B, 106, 2002, p 1334-1344
    [38]D. Soltman and V. Subramanian, “Inkjet-printed line morphologies and temperature control of the coffee ring effect”, Langmuir, 24, 2008, p 2224-2231
    [39]J. Perelaer, B.J. De Gans and U.S. Schubert, “Ink-jet printing and microwave sintering of conductive silver tracks”, Advanced Materials, 18, 2006, p 2101-2104
    [40]E.D. Martnez, M.G. Bellino and G. J. A. A. Soler-Illia, “Patterned Production of Silver-Mesoporous Titania Nanocomposite Thin Films Using Lithography-Assisted Metal Reduction”, ACS Applied Materials & Interfaces, 1, 2009, p746-749
    [41]R. Mahadevan, D. Lee, H. Sakurai and M.R. Zachariah, “Measurement of condensed-phase reaction kinetics in the aerosol phase using single particle mass spectrometry”, Journal of Physical Chemistry A, 106, 2002, p 11083-11092
    [42]Q. Cui, S. Chandra and S. McCahan, “The effect of dissolving salts in water sprays used for quenching a hot surface: Part 1 - Boiling of singled droplets”, Journal of Heat Transfer, 125, 2003, p 326-332
    [43]J. De Jong, G. De Bruin, H. Reinten, M. Van Den Berg, H. Wijshoff, M. Versluis and D. Lohse, “Air entrapment in piezo-driven inkjet printheads”, Journal of the Acoustical Society of America, 120, 2006, p 1257-1265
    [44]J.T. Wu, S.L.C. Hsu, M.H. Tsai and W.S. Hwang, “Conductive silver patterns via ethylene glycol vapor reduction of ink-jet printed silver nitrate tracks on a polyimide substrate”, Thin Solid Films, 517, 2009, p 5913-5917
    [45]M.T. Demko, Z. Dai, H. Yan, W.P. King, M. Cakmak and A.R. Abramson, “Application of the thermal flash technique for low thermal diffusivity micro/nanofibers”, Review of Scientific Instruments, 80, 2009, p 036103
    [46]C.S. Chen, “Evaluation of the water vapor diffusion coefficient in the drop growth equation”, Journal of the Atmospheric Sciences, 31, 1974, p 845-847
    [47]A.N. Campbell, J.B. Fishman, G. Rutherford, T.P. Schaefer and L. Ross, “Vapor pressures of aqueous solutions of silver nitrate, of ammonium nitrate, and of lithium nitrate”, Canadian Journal of Chemistry, 34, 1956, p 151-159
    [48]D. Kim, S. Jeong, S. Lee, B.K. Park and J. Moon, “Organic thin film transistor using silver electrodes by the ink-jet printing technology”, Thin Solid Films, 515, 2007, p 7692-7696

    下載圖示 校內:2012-07-09公開
    校外:2014-07-09公開
    QR CODE