| 研究生: |
林子安 Lin, Zin-An |
|---|---|
| 論文名稱: |
基地遮蔭策略下的簡易熱輻射降溫評估模式建構 Establishment of a Simplified Thermal Radiation Cooling Assessment Model base on Site Shading Strategies |
| 指導教授: |
林子平
Lin, Tzu-ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 遮蔭策略 、戶外熱舒適 、熱輻射 、評估公式 、ENVI-met工具 |
| 外文關鍵詞: | shading strategies, outdoor thermal comfort, radiant heat, assessment formula, ENVI-met tool |
| 相關次數: | 點閱:51 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在近年都市逐年升溫的背景下,降溫策略之議題備受關注,其中設置遮蔭是提高人體熱舒適之有效策略之一。然而,回顧熱輻射文獻或評估工具,存在三種潛在問題,一是工具本身不容易使用,二是評估方式無法引導設計,三是評分結果缺乏科學量化數據支持。本研究旨在藉由熱輻射理論的簡化以及各樣評估工具的整合,建立了一個兼具使用性、引導性及科學性效益之基地遮蔭輻射降溫公式,供設計者使用。
在研究方法上,首先於夏日下午進行實測,並透過ISO計算式以及Rayman軟體工具取得Tmrt來驗證ENVI-met模擬值之準確性。同時也簡化了熱輻射理論,基於長短波的輻射接收模式,以人工與自然遮蔭之設計參數創建公式架構,接著依據ENVI-met模擬之Tmrt降溫效益分析來擬訂公式參數,最後試算大量實際案例去進行驗證及適用性評估,並針對該公式進行延伸與補充。
研究成果發現Tmrt之實測與模擬數據於夏日下午時段適配良好,台灣街道常見之1:1寬高比的騎樓在極端高溫之夏季午後可貢獻22℃之Tmrt降溫,若朝西曬方向則會再減少5至8℃,而遮陽板每提升10%透光率約減少3℃之Tmrt降溫效益,且使用木板之降溫效果較混凝土或金屬佳。本研究依上述降溫數據建立各類遮蔭項目的Tmrt降溫效益核對表,於進一步納入面積參數後,研擬出基地遮蔭輻射降溫公式(Site Shading Benefit,SSB),該式可透過簡單運算評估基地戶外空間整體熱輻射接收情形。
研究驗證方面則透過案例的試算,確認SSB公式的使用性、引導性及科學性。此外,本研究亦進一步延伸擴充SSB公式,一是提出評估項目更加完整的詳評版本供設計者參考,二則發展ΔTmrt與ΔPET之間的簡易轉換模式,提出基地遮蔭體感降溫公式SSBthermal,幫助使用者更值觀地瞭解基地遮蔭設計對於基地熱舒適提升的效果。
最後,在應用方面則依據研究成果,提出台灣綠建築評估手冊-社區類(EEWH-EC)戶外遮蔭係數(HIj)的修正建議。並將成果導入臺北熱島降溫指標(HCI)之日射降溫值(Tr)相關計算方式。同時,也基於普通民眾或設計參考者的角度彙整研究成果,將成果精要以條列式的文字建議搭配說明圖例建立遮蔭設計建議指南。
In the context of rising urban temperatures, the efficacy of cooling strategies, particularly shading installations, has garnered significant attention. However, prevalent issues in thermal radiation literature and assessment tools include challenging usability, insufficient guidance for design, and a lack of scientific data support. This study addresses these challenges by simplifying thermal radiation theory and integrating diverse assessment tools. The outcome unveils a site shading radiation cooling formula, a user-friendly, design-guided, and scientifically supported approach for designers evaluating site shading.
The research methodology involves conducting initial measurements on summer afternoons using ISO and Rayman to validate ENVI-met simulation accuracy. This study simplifies thermal radiation theory, creating a formula structure based on short- and long-wave radiation reception modes and translating scientific parameters into actionable design factors. Formula parameters are derived from ENVI-met simulated Tmrt cooling benefits, followed by computations on numerous cases to verify and assess formula applicability.
Findings indicate a good match between the measured and simulated Tmrt data during summer afternoons. A common 1:1 width-to-height ratio colonnade in Taiwan contributes a 22°C cooling effect in extremely hot afternoons, with an additional decrease of 5-8°C if facing west. Each 10% increase in the roof transmittance resulted in an approximately 3°C Tmrt reduction benefit, with wood providing the best cooling effect and metal the least. Based on the obtained cooling data, a Site Shading Benefit (SSB) formula was developed by incorporating area parameters, allowing for a simple calculation to assess the overall radiant heat reception of outdoor spaces on a site.
1.Ali-Toudert, F., & Mayer, H. (2006). Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Building and environment, 41(2), 94-108.
2.Boroondara City Council. (2017). Shade Policy.
3.Bourbia, Fatiha, and Fouzia Boucheriba. "Impact of street design on urban microclimate for semi arid climate (Constantine)." Renewable Energy 35.2 (2010): 343-347.
4.Campbell, G. S. (2012). The researcher’s complete guide to Leaf Area Index (LAI). Meter group[online].[cit. 4.11. 2023]. Dostupné z: https://www. metergroup. com/en/meter-environment/educationguides/researchers-complete-guide-leaf-area-index-lai.
5.Cheung, P. K., & Jim, C. Y. (2018). Comparing the cooling effects of a tree and a concrete shelter using PET and UTCI. Building and Environment, 130, 49-61.
6.Chow, W. T., Brennan, D., & Brazel, A. J. (2012). Urban heat island research in Phoenix, Arizona: Theoretical contributions and policy applications. Bulletin of the American Meteorological Society, 93(4), 517-530.
7.City of Phoenix. (2001). Phoenix Zoning Ordinance. https://phoenix.municipal.codes/ZO
8.Ding, L., He, B., Craft, W., Petersen, H., Osmond, P., Santamouris, M., ... & Midlam, N. (2019). Cooling Sydney Strategy: planning for Sydney 2050.
9.ENVI-met high-resolution 3D modeling for Climate Adaption. https://www.envi-met.com/
10.ENVI-met. Solar analysis. Retrieved from https://www.envi-met.com/enterprise/#solar-analysis (March. 06, 2024)
11.Gulyás, Á., Unger, J., & Matzarakis, A. (2006). Assessment of the microclimatic and human comfort conditions in a complex urban environment: modelling and measurements. Building and Environment, 41(12), 1713-1722.
12.Heat Action Planning Guide for Neighborhoods of Greater Phoenix. (n.d.). American Planning Association. Retrieved February 23, 2024, from https://www.planning.org/knowledgebase/resource/9246224/
13.Heaviside, C., Macintyre, H., & Vardoulakis, S. (2017). The urban heat island: implications for health in a changing environment. Current environmental health reports, 4, 296-305.
14.Holst, J., & Mayer, H. (2011). Impacts of street design parameters on human-biometeorological variables. Meteorologische Zeitschrift (Berlin), 20.
15.Höppe, P. (1999). The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol, 43, 71-75.
16.Höppe, P. (1999). The physiological equivalent temperature–a universal index for the biometeorological assessment of the thermal environment. International journal of Biometeorology, 43, 71-75.
17.ISO. (1998). International Standard 7726, Thermal environment-instruments and method for measuring physical quantities. Geneva: International Standard Organization.
18.Kántor, N., & Unger, J. (2011). The most problematic variable in the course of human-biometeorological comfort assessment—the mean radiant temperature. Central European Journal of Geosciences, 3, 90-100.
19.Kántor, N., Chen, L., & Gál, C. V. (2018). Human-biometeorological significance of shading in urban public spaces—Summertime measurements in Pécs, Hungary. Landscape and urban planning, 170, 241-255.
20.Ladybug Tools. Radiation Studies. Retrieved from https://www.ladybug.tools/ladybug.html#radiation (March. 06, 2024)
21.Lin, T. P., & Matzarakis, A. (2008). Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int J Biometeorol, 52(4), 281-290.
22.Maricopa Association of Governments. (2005). Pedestrian Policies and Design Guidelines.
23.Matzarakis, A., Mayer, H., & Iziomon, M. G. (1999). Applications of a universal thermal index: physiological equivalent temperature. International journal of biometeorology, 43, 76-84.
24.Middel, A., & Krayenhoff, E. S. (2019). Micrometeorological determinants of pedestrian thermal exposure during record-breaking heat in Tempe, Arizona: Introducing the MaRTy observational platform. Science of the total environment, 687, 137-151.
25.Middel, A., AlKhaled, S., Schneider, F. A., Hagen, B., & Coseo, P. (2021). 50 grades of shade. Bulletin of the American Meteorological Society, 102(9), E1805-E1820.
26.Osmond, P., & Sharifi, E. (2017). Guide to urban cooling strategies. Low Carbon Living CRC.
27.Ou, H. Y., & Lin, T. P. (2023). Effects of orientation and dimensions of shading structures on thermal comfort. Building and Environment, 243, 110715.
28.Roudsari, M. S., & Pak, M. (2013). Ladybug: a parametric environmental plugin for grasshopper to help designers create an environmentally-conscious design.
29.Singapore Land Transport Authority & Urban Redevelopment Authority. (2018). Walking and Cycling Design Guide.
30.Stoneham, M., Earl, C., & Baldwin, L. (2007). Creating shade at public facilities: Policy and guidelines for local government (Edition 2). Australian Institute of Environmental Health (AIEH). https://www.health.qld.gov.au/ph/documents/hpu/20267.pdf
31.Tan, C. L., Wong, N. H., & Jusuf, S. K. (2013). Outdoor mean radiant temperature estimation in the tropical urban environment. Building and Environment, 64, 118-129.
32.Thorsson, S., Lindberg, F., Eliasson, I., & Holmer, B. (2007). Different methods for estimating the mean radiant temperature in an outdoor urban setting. International Journal of Climatology: A Journal of the Royal Meteorological Society, 27(14), 1983-1993.
33.UVR Working Group. Toronto Cancer Prevention Coalition. (2010). Shade Guidelines.
34.VDI. (1998). Methods for the human biometeorological evaluation of climate and air quality for the urban and regional planning. Part I: Climate. In VDI guideline 3787. Part 2. Berlin: Beuth.
35.Wang, Z., Hong, T., Li, H., & Piette, M. A. (2021). Predicting city-scale daily electricity consumption using data-driven models. Advances in Applied Energy, 2, 100025.
36.Watson, I. D., & Johnson, G. T. (1987). Graphical estimation of sky view‐factors in urban environments. Journal of climatology, 7(2), 193-197.
37.日本サステナブル建築協会(2010)。CASBEE-HI(ヒートアイランド)評価マニュアル。東京都:建築環境・省エネルギー機構。
38.日本環境署(2018)。まちなかの暑さ対策ガイドライン。
39.內政部建築研究所(2019)。綠建築評估手冊-社區類。
40.台南市政府(2022)。臺南特色建築設計及鼓勵辦法。
41.何明錦、黃國倉(2013)。臺灣建築能源模擬解析用逐時標準氣象資料TMY3之建置與研究,內政部建築研究所協同研究報告。
42.林子平(2021)。都市的夏天為什麼愈來愈熱?:圖解都市熱島現象與退燒策略。臺北市:商周。
43.林子平、趙立衡、林子安(2023)。「臺北市開發基地降溫指標及都市設計準則」專業服務委託案,臺北市政府。
44.智慧綠建築資訊網。建築能源模擬解析用TMY3標準氣象年資料。擷自:https://smartgreen.abri.gov.tw/News.aspx?n=14231&sms=12414
45.楊明叡(2021)。都市熱島指標評估系統之建立及應用。國立成功大學建築系,臺南市。
46.趙立衡(2023)。改善都市通風之建築量體型態策略研究。國立成功大學建築系,臺南市。
47.歐星妤(2022)。戶外遮蔽設施方位與尺寸對熱舒適影響之研究。國立成功大學建築系,臺南市。
48.魏育瑛(2024)。 喬木遮蔭程度對人體熱舒適的影響及建立應用評估工具 (未出版博碩士論文)。國立成功大學建築系,臺南市。