簡易檢索 / 詳目顯示

研究生: 翁愷廷
Weng, Kai-Ting
論文名稱: 空間具高程差之老舊大型講廳換氣效益評估及使用管理
Ventilation Efficiency Evaluation and Usage Management of Old Large Lecture Halls with Spatial Elevation Differences
指導教授: 潘振宇
Pan, Chen-Yu
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 123
中文關鍵詞: 高位差空間換氣系統設計混合換氣系統換氣效益評估
外文關鍵詞: Height Difference Space, Ventilation System Design, Mixed Ventilation System, Ventilation Effectiveness Assessment
相關次數: 點閱:61下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對國內校園中常見的老舊大型講廳(可容納百人以上)進行調查,並針對某間具有高度差的典型階梯型講廳進行換氣配置的調整,並比較不同換氣配置下的換氣效益。改善後的系統保留了風量約為1700(m3/h)的舊有機械風機及增設兩台風量分別為2000(m3/h)及1000(m3/h)的機械風機,使室內通風換氣量達至約4700(m3/h)以符合各國規範及標準,在高彈性的換氣使用下,可因應在不同氣候、使用人數及需求調變使用,並在控制室內二氧化碳濃度的同時達到節能的效果。
    為了具體測得並分析換氣效益的差異性,本研究透過濃度衰減法現場實測及CFD模擬作為研究方法,結果顯示,不同換氣配置影響實際換氣效率,換氣效益落差最大達至40% 以上。本研究之重點結論如下:1.較密閉的室內環境明顯不利於換氣,關閉自然開口使ACH從衰減了2.36% 至最大衰減了30.71%。 2.在高位配置機械換氣時,以第二類換氣(正壓)方式較佳,在低位配置低位配置機械換氣時,以第三類換氣(負壓)方式較佳。 3. CO2 濃度的沉澱間接影響換氣效益,在相對密閉狀態時,沉澱於低位的CO2 濃度最高達10000 ppm以上。4.風管的高度與出風角度對換氣效率有一定影響,風口面依照空間高程斜率設計俯仰角,能有較好的氣流路徑模式。

    This study adjusts the ventilation configuration for a tiered lecture hall with varying elevations, comparing the ventilation effectiveness under different setups. The modified system achieves a ventilation rate of approximately 4700CMH to comply with international standards. With a highly flexible ventilation configuration, it can adapt to diverse climates, number of users and needs while controlling indoor CO2 concentration and promoting energy efficiency.
    Through on-site testing using the concentration-decay method and Computational Fluid Dynamics (CFD) simulation as a validation method, the results indicate that different ventilation configurations impact actual ventilation efficiency, with a maximum deviation in ventilation effectiveness exceeding 40%. A more enclosed indoor environment is noticeably disadvantageous for ventilation. Closing natural openings results in a decrease in Air Changes per Hour (ACH) ranging from a decline of 2.36% to a maximum reduction of 30.71%. Additionally, due to the deposition of CO2 concentration, designing pitch angles based on spatial elevation slopes contributes to a better ventilation effect along airflow paths from high to low positions.

    中文摘要 i 英文摘要 ii 誌謝 ix 表目錄 xiii 圖目錄 xiv 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 2 1-2-1 室內通風換氣方法及相關文獻及規範 2 1-2-2 室內CO2濃度標準相關文獻 4 1-2-3 老舊大型建築及空調設備相關文獻 5 1-2-4 建築節能換氣系統設計相關文獻 6 1-3 研究動機與目的 7 1-4 研究範圍及流程 8 1-5 研究內容及架構 10 第二章 換氣系統改善研究計畫 11 2-1 改善計畫及範圍 11 2-2 老舊大型講廳通風狀況調查 13 2-3 改善及研究對象 15 2-3-1 既有空間條件及通風狀況 15 2-3-2 舊有通風換氣系統條件 18 2-4 改善問題及方法 20 2-4-1 室內通風及舒適度評估 20 2-4-2 實際改善方法 22 2-5 實際設計改善結果 23 2-5-1 改善後空調機械換氣系統 23 2-5-2 構件及外觀整合 27 2-5-3 實際改善過程及成果 31 第三章 研究方法 33 3-1 室內換氣效能檢測方法 33 3-2 換氣系統及機械換氣位置說明 35 3-3 以濃度衰減法現場實測 36 3-3-1 選用儀器設備 36 3-3-2 數據採樣方法 38 3-3-3 現場實測月份選定 41 3-3-4 實驗條件及流程 42 3-4 以計算流體動力學模擬 44 3-4-1 計算流體動力學模擬軟體選定 44 3-4-2 模擬條件及參數設定 45 3-4-3 模擬流程 47 第四章 實際檢測及CFD模擬結果 48 4-1 濃度衰減法實測結果 48 4-1-1 換氣系統及換氣位置比較 48 4-1-2 各監測點位換氣狀況 52 4-1-3 密閉程度評估換氣效益 60 4-1-4 小結 64 4-2 計算流體動力學CFD模擬結果 65 4-2-1 汙染物濃度分布狀況 65 4-2-2 風速及壓力差比較 78 4-2-3 小結 86 4-2-4 綜合結論 87 第五章 結論與建議 89 5-1 結論 89 5-2 後續研究建議 93 參考文獻 96

    公告場所室內空氣品質檢驗測定管理辦法。行政院環境保護署。臺灣臺北市。2022。
    內政部建築研究所。綠建築評估手冊–基本型。內政部建築研究所。臺灣新北市。2022。
    中華人民共和國國家標準。GB 50019-2015 工業建築供暖通風與空氣調節設計規範。中國國家標準化管理委員會。中國北京市。2015。
    中華人民共和國國家標準。GB 50325-2020 民用建築工程室內環境污染控制標準。中國國家標準化管理委員會。中國北京市。2020。
    中華人民共和國國家標準。GB 50736-2012 民用建築供暖通風與空氣調節設計規範。中國國家標準化管理委員會。中國北京市。2012。
    中華人民共和國國家標準。GB/T 18883-2022 室內空氣質量標準。中國國家標準化管理委員會。中國北京市。2022。
    各類場所消防安全設備設置標準。行政院內政部。臺灣臺北市。2021。
    邱英浩, 戴育澤, & 吳孟芳. (2010). 利用自然通風技術改善室內熱環境及通風效能之研究-以慈濟台中分會為例. Journal of architecture, 11(2), 111-136.
    李怡萱。「建築室內自然通風評估之研究」。碩士論文,國立成功大學建築學系,2014。
    空氣品質標準。行政院環保署。臺灣臺北市。2020。
    林憲德。人居熱環境。詹氏書局。臺灣臺北市。2009。
    林憲德。綠建築91技術。詹氏書局。臺灣臺北市。2016。
    室內空氣品質管理法。行政院環境保護署。臺灣臺北市。2011。
    室內冷氣溫度限值現場檢查程序作業要點。行政院經濟部能源局。臺灣臺北市。2017。
    建築技術規則建築設計施工編。行政院內政部。臺灣臺北市。2019。
    建築技術規則建築設備編。行政院內政部。臺灣臺北市。2019。
    教育部統計處教育統計進階查詢。行政院教育部。臺灣臺北市。2022。
    張從怡。「舊建築更新節能改善效益之研究—以綠建築更新改造計畫為例」。博士論文,國立成功大學建築學系,2014。
    黃琳琳。「以健康觀點探討室內空氣品質改善可行性之研究」。碩士論文,國立成功大學建築學系專班,2004。
    劉哲成。「臺灣南部高齡日照機構室內換氣環境品質調查暨改善策略可行性研究」。碩士論文,國立成功大學建築學系,2022。
    作業環境測定基準。厚生労働省。日本東京都。2020。
    空気調和・衛生工学会。空気調和・衛生設備の知識。オーム社。日本東京都。2017。
    空気調和・衛生工学会。空気調和設備計画設計の実務の知識。空気調和衛生工学会。 日本東京都。2000。
    建築物における衛生的環境の確保に関する法律施行規則。厚生勞動省。日本東京都。2021。
    建築物環境衛生管理基準について。厚生勞動省。日本東京都。2022。
    建築設備技術者協会。最新建築設備設計マニュアル 空気調和編。井上書院。日本 東京都。2020。
    建築基準法施行令。国土交通省。日本東京都。2020。
    ALIANTO, Beline; NASRUDDIN, N.; NUGROHO, Yulianto Sulistyo. High-rise building fire safety using mechanical ventilation and stairwell pressurization: A review. Journal of Building Engineering, 2022, 50: 104224.
    ALMEIDA, Ricardo MSF; BARREIRA, Eva; MOREIRA, Pedro. Assessing the variability of the air change rate through tracer gas measurements. Energy Procedia, 2017, 132: 831-836.
    ASHRAE, A. ANSI/ASHRAE Standard 62.2-2019 Ventilation and Acceptable Indoor Air Quality in Residential Buildings. American Society of Heating. Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA. 2019.
    ASHRAE, A. ANSI/ASHRAE Standard 62.1-2022 Ventilation and Acceptable Indoor Air Quality. American Society of Heating. Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA. 2022.
    ASTM. D6245-18, Standard Guide for Using Indoor Carbon Dioxide Concentrations to Evaluate Indoor Air Quality and Ventilation. American Society for Testing and Materials. 2021.
    CHEN, Qingyan. Ventilation performance prediction for buildings: A method overview and recent applications. Building and environment, 2009, 44.4: 848-858.
    CHENG, Yuanda; NIU, Jianlei; GAO, Naiping. Stratified air distribution systems in a large lecture theatre: A numerical method to optimize thermal comfort and maximize energy saving. Energy and Buildings, 2012, 55: 515-525.
    CUI, Shuqing, et al. CO2 tracer gas concentration decay method for measuring air change rate. Building and environment, 2015, 84: 162-169.
    DAISEY, Joan M.; ANGELL, William J.; APTE, Michael G. Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information. Indoor air, 2003, 13.LBNL-48287.
    FANGER, Poul O., et al. Thermal comfort. Analysis and applications in environmental engineering. Thermal comfort. Analysis and applications in environmental engineering., 1970.
    FANGER, P. Ole, et al. Air pollution sources in offices and assembly halls, quantified by the olf unit. Energy and Buildings, 1988, 12.1: 7-19.
    FRONTCZAK, Monika; WARGOCKI, Pawel. Literature survey on how different factors influence human comfort in indoor environments. Building and environment, 2011, 46.4: 922-937.
    GAO, Jie; WARGOCKI, Pawel; WANG, Yi. Ventilation system type, classroom environmental quality and pupils' perceptions and symptoms. Building and environment, 2014, 75: 46-57.
    HAVERINEN‐SHAUGHNESSY, Ulla; MOSCHANDREAS, D. J.; SHAUGHNESSY, R. J. Association between substandard classroom ventilation rates and students’ academic achievement. Indoor air, 2011, 21.2: 121-131.
    HEEBØLL, Anna; WARGOCKI, Pawel; TOFTUM, Jørn. Window and door opening behavior, carbon dioxide concentration, temperature, and energy use during the heating season in classrooms with different ventilation retrofits—ASHRAE RP1624. Science and Technology for the Built Environment, 2018, 24.6: 626-637.
    HEISELBERG, Per; BJØRN, Erik; NIELSEN, Peter V. Impact of open windows on room air flow and thermal comfort. International Journal of Ventilation, 2002, 1.2: 91-100.
    HENSEN, Jan LM; LAMBERTS, Roberto (ed.). Building performance simulation for design and operation. Routledge, 2012.
    HUNG, Ian; LIN, Hsien Te; WANG, Yu Chung. A Study on the Performance of Stratified Air Conditioning Design in Assembly Halls–A Case Study at the Dazhi Cultural Center in Taiwan. Applied Mechanics and Materials, 2013, 368: 599-602.
    INNENRAUMRICHTWERTE, Mitteilungen der Ad-hoc-Arbeitsgruppe, et al. Health evaluation of carbon dioxide in indoor air. Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz, 2008, 51.11: 1358-1369.
    INTERNATIONAL CODE COUNCIL (ICC). International fire code. U.S.A. 2021.
    KATO, Shinsuke; MURAKAMI, Shuzo; KOBAYASHI, Hikaru. New scales for evaluating ventilation efficiency as affected by supply and exhaust openings based on spatial distribution of contaminant. 1992.
    KELLY, Frank J.; FUSSELL, Julia C. Improving indoor air quality, health and performance within environments where people live, travel, learn and work. Atmospheric Environment, 2019, 200: 90-109.
    KIERAT, Wojciech, et al. Accurate assessment of exposure using tracer gas measurements. Building and Environment, 2018, 131: 163-173.
    KIM, Gon, et al. Thermal comfort prediction of an underfloor air distribution system in a large indoor environment. Energy and Buildings, 2013, 64: 323-331.
    KÜÇÜKHÜSEYIN, Ö. CO2 monitoring and indoor air quality. REHVA Eur. HVAC J, 2021, 58: 54-59.
    PERSILY, Andrew. Quit blaming ASHRAE standard 62.1 for 1000 ppm CO2. In: Proceedings of the 16th International Conference on Indoor Air Quality and Climate (INDOOR AIR 2020), Online. 2020.
    PERSILY, Andrew, et al. ASHRAE's new position document on indoor carbon dioxide. ASHRAE Journal, 2022, 64.5: 50-52.
    RAMALHO, Olivier, et al. Association of carbon dioxide with indoor air pollutants and exceedance of health guideline values. Building and Environment, 2015, 93: 115-124.
    REMION, Gabriel; MOUJALLED, Bassam; EL MANKIBI, Mohamed. Review of tracer gas-based methods for the characterization of natural ventilation performance: Comparative analysis of their accuracy. Building and Environment, 2019, 160: 106180.
    SADRIZADEH, Sasan, et al. Indoor air quality and health in schools: A critical review for developing the roadmap for the future school environment. Journal of Building Engineering, 2022, 104908.
    SAÏD, M. N. A.; MACDONALD, R. A.; DURRANT, G. C. Measurement of thermal stratification in large single-cell buildings. Energy and buildings, 1996, 24.2: 105-115.
    SALMA, I., et al. Physical properties, chemical composition, sources, spatial distribution and sinks of indoor aerosol particles in a university lecture hall. Atmospheric environment, 2013, 64: 219-228.
    SCHIBUOLA, Luigi; TAMBANI, Chiara. Indoor environmental quality classification of school environments by monitoring PM and CO2 concentration levels. Atmospheric Pollution Research, 2020, 11.2: 332-342.
    SEKHAR, Chandra, et al. Bedroom ventilation: review of existing evidence and current standards. Building and Environment, 2020, 184: 107229.
    SHAUGHNESSY, Richard J., et al. A preliminary study on the association between ventilation rates in classrooms and student performance. Indoor air, 2006, 16.6.
    TOGNON, Giacomo, et al. Mechanical, natural and hybrid ventilation systems in different building types: Energy and indoor air quality analysis. Journal of Building Engineering, 2023, 107060.
    VAN BUGGENHOUT, S., et al. Influence of sampling positions on accuracy of tracer gas measurements in ventilated spaces. Biosystems Engineering, 2009, 104.2: 216-223.
    WALLACE, Lance A., et al. Total Exposure Assessment Methodology (TEAM) Study: personal exposures, indoor-outdoor relationships, and breath levels of volatile organic compounds in New Jersey. Environment International, 1986, 12.1-4: 369-387.
    WARGOCKI, Pawel, et al. The effects of outdoor air supply rate in an office on perceived air quality, sick building syndrome (SBS) symptoms and productivity. 2000.
    WARGOCKI, Pawel; WYON, David P. Research report on effects of HVAC on student performance. ASHRAE journal, 2006, 48.10: 22.
    WARGOCKI, Pawel; WYON, David P. The effects of outdoor air supply rate and supply air filter condition in classrooms on the performance of schoolwork by children (RP-1257). Hvac&R Research, 2007, 13.2: 165-191.
    WARGOCKI, Pawel; WYON, David P. Providing better thermal and air quality conditions in school classrooms would be cost-effective. Building and Environment, 2013, 59: 581-589.
    WANG, Yong, et al. Design configuration for a higher efficiency air conditioning system in large space building. Energy and Buildings, 2014, 72: 167-176.
    WEI, Wenjuan; RAMALHO, Olivier; MANDIN, Corinne. Indoor air quality requirements in green building certifications. Building and Environment, 2015, 92: 10-19.
    WORLD HEALTH ORGANIZATION, et al. Combined or multiple exposure to health stressors in indoor built environments: an evidence-based review prepared for the WHO training workshop “Multiple environmental exposures and risks”: 16–18 October 2013, Bonn, Germany. 2014.
    XUE, Kai, et al. Experimental study on the effect of exhaust airflows on the surgical environment in an operating room with mixing ventilation. Journal of Building Engineering, 2020, 32: 101837.
    ZHANG, Rui, et al. A prototype mesh generation tool for CFD simulations in architecture domain. Building and Environment, 2010, 45.10: 2253-2262.
    ZHONG, Ke; YANG, Xiufeng; KANG, Yanming. Effects of ventilation strategies and source locations on indoor particle deposition. Building and environment, 2010, 45.3: 655-662.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE