簡易檢索 / 詳目顯示

研究生: 李昌駱
Li, Chang-Lo
論文名稱: 置中熱源對熱管散熱增益之研究
Enhancing Heat Pipe Performance by Central Heating
指導教授: 周榮華
Chou, Jung-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 67
中文關鍵詞: 熱管散熱熱阻置中熱源
外文關鍵詞: condensation, heat pipe, thermal resistance, evaporation, central heating
相關次數: 點閱:67下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究以實驗的方法探討熱管在不同安裝方式的熱傳特性,並以熱阻的變化,探討熱管的最大熱傳量。安裝方式為在不改變熱管的結構之下,熱管在不同蒸發端位置(中段加熱)與不同散熱端位置(蒸發端固定、散熱端移動)的散熱效益。研究結果顯示,一根中段加熱的熱管,其所能傳遞的熱傳量,約與兩根總長相等的短熱管頭尾相連所能傳遞的熱量相當。而且熱管的有效長度越短,能夠使冷凝端的工作流體快速地回流至蒸發端,而能傳遞更多的熱量。因此,在相同的散熱條件之下,中段加熱的熱管比典型的熱管能多傳遞44%~75%的熱傳量。

      Due to the increasing power dissipation and limited packaging space in modern IT products, especially in personal and notebook computers, thermal management has become a main issue. In order to cool higher heat flux CPUs, the application with heat pipes becomes inevitable.
      Experiments were conducted to investigate the cooling characteristics of heat pipes by changing the locations of the evaporator and condenser section. The heat pipes are 200mm long with a diameter of either 4mm or 5mm. Both one-end heating and central heating configurations are studied. The results indicate that the shorter the effective length of the heat pipe is, the more heat can be transferred through the heat pipe. The heat pipe with centrally heated evaporation is proved to improve heat transfer rate by 44%~75%.

    表目錄.........................................................................IV 圖目錄..........................................................................V 符號表.......................................................................VIII 第一章 導論.....................................................................1 1-1 前言......................................................................1 1-2 研究動機..................................................................3 1-3 文獻回顧..................................................................4 第二章 理論基礎.................................................................8 2-1 熱管工作原理..............................................................8 2-2 實驗模型理論..............................................................9 2-2-1 熱阻值................................................................9 2-2-2 熱管有效長度.........................................................10 2-2-3 熱管最大熱傳量.......................................................10 第三章 實驗方法與設備..........................................................12 3-1 實驗方法.................................................................12 3-2 實驗設備.................................................................13 3-2-1 熱電偶溫度擷取系統..................................................13 3-2-2 電源供應器..........................................................14 3-2-3 烘箱................................................................14 3-3 實驗模型.................................................................15 3-3-1 模擬晶片............................................................15 3-3-2 熱管................................................................16 3-3-3 散熱模組............................................................16 3-3-4 嵌入鋁塊............................................................17 3-3-5 散熱膏..............................................................17 3-3-6 絕熱材料............................................................17 3-3-7 實驗參數............................................................18 第四章 結果與討論..............................................................19 4-1 典型不同管徑、相同長度之熱管最大熱傳量...................................19 4-1-1 管徑4mm、總長200mm熱管..............................................20 4-1-2 管徑5mm、總長200mm熱管..............................................21 4-2 改變蒸發端位置對熱管熱傳效益之影響.......................................23 4-2-1 熱管中段加熱之熱傳效益 (管徑4mm、總長200mm).........................23 4-2-2 熱管中段加熱之熱傳效益 (管徑5mm、總長200mm).........................25 4-2-3 比較與討論..........................................................26 4-2-4 兩根管徑4mm、總長100mm之熱管頭尾相連,於連接處加熱、其餘兩端散熱....29 4-3 改變冷凝端散熱條件對熱管熱傳效益之影響...................................32 4-3-1 Xc=0mm..............................................................32 4-3-2 Xc=40mm.............................................................33 4-4 討論.....................................................................34 第五章 結論....................................................................37 參考文獻.......................................................................39

    1. R. S. Gaugler, “Heat Transfer Devices”, US Patent 2350348, Appl. 21 December 1942, Published 6 June 1966.

    2. G. M. Grover, ”Evaporation-Condensation Heat Transfer Device”, US Patent 3229759, Appl. 2 December 1963, Published 18 January 1966.

    3. K. F. Bainton, “Experimental Heat Pipes”, AERE-M1610, Harwell, Berk, Atomic Energy Establishment, Appl. Physics Div, June 1965.

    4. C. A. Busse, R. Caron and C. Cappelletti, “Prototypes of Heat Pipe Thermionic Converters for Space Reactors”, IEEE, 1st Conf. on Thermionic Electrical Power Generation, London, 1965.

    5. J. E. Deverall and J. E. Kemme, ”Satellite Heat Pipe”, USAEC Report LA-3278, Contract W-7405-eng-36, Los Alamos Scientific Laboratory, University of California, September 1970.

    6. S. W. Chi, “Heat Pipe Theory and Practice: a Sourcebook”, Hemisphere Pub. Corp., Washington, DC, pp. 5-8, 1976.

    7. P. Dunn and D. A. Reay, “Heat Pipes”, 3rd ed., Pergamon, New York, pp. 266-269, 1982.

    8. G. P. Peterson, A. B. Duncan and M. H. Weichold, “Experimental Investigation of Micro Heat Pipes Fabricated in Silicon Wafers”, Journal of Heat Transfer, Vol. 115, pp. 54-64, August 1993.

    9. H. Xie, M. Aghazadeh and J. Toth, “The Use of Heat Pipe for the Cooling of Portables with High Power Packages - A Case Study with the Pentium Processor Based Notebooks and Sub-notebooks”, 45th ECTC, Las Vegas, Nevada, pp. 906-913, 1995.

    10. K. S. Kim, M. H. Won, J. W. Kim and B. J. Back, “Heat Pipe Cooling Technology for Desktop PC CPU”, Applied Thermal Engineering, Vol. 23, pp.1137-1144, 2003.

    11. M. Oomi, T. Fukumoto, T. Kobayashi, M. Sugiura, K. Nakayama and K. Namba, “State-of-the-Art Technologies of Micro Heat-Pipe Heat-Sink for Notebook PCs”, Furukawa Review, No. 21, pp. 69-74, 2002.

    12. G. Y. Eastman, ”The Heat Pipe”, Scientific American, Vol. 218, No. 12, pp.38-46, 1968.

    13. S. H. Moon, C. G. Choi, G. Hwang and T. G. Choy, “Experimental Study on Performance of a Miniature Heat Pipe with Woven-Wire Wick”, Inter Society Conference on Thermal Phenomena, pp. 129-133, 2000.

    14. R. Ponnappan, “A Novel Micro-Capillary Groove-Wick Miniature Heat Pipe”, Energy Conversion Engineering Conference and Exhibit, (IECEC) 35th Inter Society, Vol. 2, pp. 818-826, 2000.

    15. T. Murase, K. Yoshida, J. Fujikake, T. Koizumi and N. Ishida, “Heat Pipe Heat Sink HEAT KICKER for Cooling of Semi-Conductors”, Furukawa Review, No. 2, pp. 24-33, 1982.

    16. M. Mochizuki, Y. Saito, K. Goto and T. Nguyen, “Hinged Heat Pipe for Cooling Notebooks PCs”, IEEE SEMI-THERM Symposium, pp. 64-72, 1997.

    17. H. Xie, A. Ali and R. Bhatia, “The Use of Heat Pipes in Personal Computers”, Inter Society Conference on Thermal Phenomena, pp. 8-14, 1998.

    18. T. Nguyen, M. Mochizuki, K. Mashiko, Y. Saito and I. Sauciuc, “Use of Heat Pipe/ Heat Sink for Thermal Management of High Performance CPUs”, Semiconductor Thermal Measurement and Management Symposium, Sixteenth Annual IEEE, pp. 76-79, 2000.

    19. T. Nguyen, M. Mochizuki, K. Mashiko, Y. Saito, I. Sauciuc and R. Boggs, “Advanced Cooling System Using Miniature Heat Pipes in Mobile PC”, IEEE Transactions on Components and Packaging Technology, Vol. 23, No. 1, pp. 86-90, March 2000.

    20. G. P. Peterson, “An Introduction to Heat Pipes”, John Wiley & Sons, New York, pp.44-74, 1994.

    21. A. Bejan, “Convection Heat Transfer”, 2nd ed., John Wiley & Sons, New York, 1995.

    22. F. S. Tse and I. E. Morse, “Measurement and Instrumentation in Engineering”, Marcel Dekker, Inc, 1989.

    23. Measuring Temperature with Thermocouples - a Tutorial, National Instruments, November, 1996.

    下載圖示 校內:立即公開
    校外:2004-07-19公開
    QR CODE