| 研究生: |
李牧寰 Lee, Mu-Huan |
|---|---|
| 論文名稱: |
紫質材料於有機平面異質接面太陽能電池研究 Porphyrin Derivatives on Organic Planar Heterojunction Solar Cells |
| 指導教授: |
郭宗枋
Guo, Tzung-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 紫質材料 、平面異質接面(PHJ) 、有機太陽能電池 |
| 外文關鍵詞: | porphyrins, planar heterojunction, organic solar cells |
| 相關次數: | 點閱:141 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究工作係利用人工合成的紫質材料(porphyrin),應用於平面異質接面(Planar heterojunction, PHJ) 結構的太陽能電池當中,證明紫質材料能與富勒烯衍生物(fullerene derivatives) 形成一個Donor / Acceptor異質接面,並量測到穩定的元件效率,更藉由改變主動層中搭配的受體材料,成功提升元件開路電壓與整體效率值。同時,探討蒸鍍製程與溶液製程之紫質成膜對薄膜性質的改變,以及元件表現上的差異。在電子施體端的研究中,使用一系列紫質衍生物,討論紫質分子的結構變化對元件電性造成的影響。
This study aims to employ synthetic porphyrins in organic planar heterojunction (PHJ) solar cells. The results suggest a well-defined Donor / Acceptor interface between porphyin and fullerene derivatives, which exhibit credible photovoltaic efficiency. Also, the improved open-circuit voltage (VOC) and device performance are observed through alternating acceptor components in the active layer. Comparative studies of thin-film properties and device characteristics are reported, in which the same porphyrin material is deposited using both solution-process and thermal deposition in vacuum.
In addition, a series of porphyrin derivatives is investigated as electron donor in porphyrin-base organic solar cells to get more insights into the correlations between molecular structures and device characteristics.
[1] J. A. Turner, “A realizable renewable energy future,” Science, 285, 687, 1999
[2] M. A. Green, “Third generation photovoltaics: Ultra-high conversion efficiency at low cost,” Progress in Photovoltaic: Research and Applications, 9, 123, 2001
[3] N. Jain, M. K. Hudait, “Design for metamorphic dual-junction InGaP/GaAs solar cell on Si with efficiency greater than 29% using finite element analysis,” Photovoltaic Specialists Conference 38th IEEE, 002060, 2012
[4] T. M. Razykov, “Photovoltaic solar electricity: State of the art and future prospects,” Electrical Machines and Systems, 1, 297, 2003
[5] A. K. Gosh, T. Feng, “Rectification, space‐charge-limited current, photovoltaic and photoconductive properties of Al/tetracene/Au sandwich cell,” Journal of applied physics letters, 48, 183, 1986
[6] C. W. Tang, “Two layer organic photovoltaic cell,” Applied Physics Letters, 48, 183, 1986
[7] M. Granstrom, K. Petritsch, A. C. Arias, A. Lux, M. Anderson, R. H. Friend, “Laminated fabrication of polymeric photovoltaic diodes,” Nature, 395, 257, 1998
[8] J. Xue, S. Uchida, B. P. Rand, S. R. Forrest, “Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions,” Applied Physics Letters, 85, 5757, 2004
[9] W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Advanced Functional Materials, 15, 1617, 2005
[10] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science, 317, 222, 2007
[11] S. E. Shaheen, C. J. Brebec, N. S. Sariciftci, F. Padinger, T. Fromhert, J. C. Hummelen, “2.5% efficient organic plastic solar cells,” Applied Physics Letters, 78, 841, 2001
[12] F. Padinger, R. S. Rittberger, N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells,” Advanced Functional Materials, 13, 85, 2003
[13] J. Drechsel, B. Männig, F. Kozlowski, M. Pfeiffer, K. Leo, H. Hoppe, “Efficient organic solar cells based on a double p-i-n architecture using doped wide-gap transport layers,” Applied Physics Letters, 86, 244102, 2005
[14] Y. Shao, Y. Yang, “Efficient organic heterojunction photovoltaic cells basd on triplet materials,” Advanced Materials, 17, 1841, 2005
[15] Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, “For the bright future - Bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Advanced Materials, 22, E135, 2010
[16] Y. Liang, D. Feng, Y. Wu, T. S. Sai, G. Li, C. Ray, L. Yu, “Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties,“ Journal of the American Chemical Society, 131, 7792, 2009
[17] F. C. Krebs, H. Spanggaard, “Significant improvement of polymer solar cell stability,” Chemistry of Materials, 17, 5235, 2005
[18] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, “Solar cell efficiency tables (version 41),” Progress in Photovoltaics: Research and Applications, 21, 1, 2013
[19] R. Service, “Outlook brightens for plastic solar cells,” Science, 332, 6027, 2011
[20] M. Jorgensen, K. Morrman, S. A. Gevorgyan, T. Tromholt, B. Andreason, F. C. Krebs, “Stability of polymer solar cells,” Advanced Materials, 24, 580, 2012
[21] S. D. Oosterhout, M. M. Wienk, S. S. Van Bavel, R. Thiedamnn, L. J. A. Koster, J. Gilot, J. Loos, V. Schimidt, R. R. J. Janssen, “The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells,” Nature Materials, 8, 818, 2009
[22] B. O’regan, M. Grätzel, “A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, 353, 737, 1991
[23] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science, 258, 1474, 1992
[24] G. Yu, K. Pakbaz, A. J. Heeger, “Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible-ultraviolet sensitivity,” Applied Physics Letters, 64, 3422, 1994
[25] G. Yu, J. Gao, J. Hummelen, F. Wudl, A. J. Heeger, “Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science, 270, 1789, 1995
[26] G. Li, V. Shortriya, J. Huang, T. Moriarty, K. Emery, Y. Yang, “High-efficiency solution processible polymer photovoltaic cells by self-organization of polymer blends,” Nature Materials, 4, 864, 2005
[27] M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, “Design rules for donors in bulk heterojunction solar cells - Towards 10% energy conversion efficiency,” Advanced Materials, 18, 789, 2006
[28] L. J. A. Koster, V. D. Mihailetchi, P. W. M. Blom, “Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells,” Applied Physics Letters, 88, 093511, 2006
[29] V. Y. Merritt, H. J. Hovel, “Organic solar cells of hydroxy squarylium,” Applied Physics Letters, 29, 414, 1976
[30] H. W. Kroto, J. R. Heath, S. C. OBrien, R. F. Curl, R. E. Smalley, “C60: Buckminsterfullerence,” Nature, 318, 162, 1985
[31] P. Peumans, S. R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells,” Applied Physics Letters, 79, 126, 2001
[32] J. D. Zimmerman, X. Hiao, C. K. Renshaw, S. Wang, V. V. Diev, M. E. Thompson, S. R. Forrest, “Independent control of bulk and interfacial morphologies of small molecular weight organic heterojunction solar cells,” Nano letters, 12, 4366, 2012
[33] B. E. Lassiter, J. D. Zimmerman, A. Panda, X. Hiao, S. R. Forrest, “Tandem organic photovoltaics using both solution and vacuum deposited small molecules,” Applied Physics Letters, 101, 063303, 2012
[34] M. Riede, T. Mueller, W. Tress, R. Schueppel, K. Leo, “Small-molecule solar cells – Status and perspective,” Nanotechnology, 19, 424001, 2008
[35] M. Brumbach, D. Placencia, N. R. Armstrong, “Titanyl phthalocyanine/C60 heterojunctions: Band-edge offsets and photovoltaic device performance,” Journal of Physical Chemistry C, 112, 3142, 2008
[36] M. Helgesen, R. Sondergaard F. C. Krebs, “Advanced materials and processes for polymer solar cell devices,” Journal of materials chemistry, 20, 36, 2010
[37] C. J. Ko, Y.K. Lin, F. C. Chen, C. W. Chu, “Modified buffer layers for polymer photovoltaic devices,” Applied physics letters, 90, 063509, 2007
[38] E. Bundgaard, F.C. Krebs, “Low band gap polymers for organic photovoltaics,” Solar Energy Materials and Solar Cells, 91, 954, 2007
[39] J. H. Hou, H. Y. Chen, S. Q. Zheng, G. Li, Y. Yang, “Synthesis, characterization, and photovoltaic properties of a pow band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole,” Journal of the American chemical society, 130, 16144, 2008
[40] Z. Zhu, D. Waller, R. Gaudiana, M. Morana, D. Muhlbacher, M. Scharber and C. Brabec, “Panchromatic conjugated polymers containing alternating donor/acceptor units for photovoltaic applications,” Macromolecules, 40, 1981, 2007
[41] S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nature Photonics, 3, 297, 2009
[42] B. P. Rand, J. Genoe, P. Heremans, J. Poortmans, “Solar cells utilizing small molecular weight organic semiconductors,” Progress in Photovoltaic: Research and Applications,15, 659, 2007
[43] R. F. Salzman, J. Xue, B. P. Rand, A. Alexander, M. E. Thompson, S. R. Forrest, “The effects of copper phthalocyanine purity on organic solar cell performance,” Organic Electronics, 6, 242, 2005
[44] A. Mishira, P. Bäuerle, “Small molecule organic semiconductors on the move: Promises for the future solar energy technology,” Angewandte Chemie International Edition, 51, 2020, 2012
[45] J. J. Yun, H. S. Jung, S. H. Kim, E. M. Han, V. Vaithianathan, “Chlorophyll-layer-inserted poly(3-hexyl-thiophene) solar cell having a high light-to-current conversion efficiency up to 1.48%,” Applied Physics Letters, 87, 123102, 2005
[46] P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, D. E. Markov, “Device physics of polymer:fullerene bulk heterojunction solar cells,” Advanced Materials, 19, 1551, 2007
[47] G. Li, V. Shrotriya, Y. Yao, J. Huanga Y. Yang, “Manipulating regioregular poly(3-hexylthiophene) : [6,6]-phenyl-C61-butyric acid methyl ester blends - Route towards high efficiency polymer solar cells,” Journal of Materials Chemistry, 17, 3126, 2007
[48] J. Nelson, “The physics of solar cells,” Imperial Collage Press, London, 2003
[49] J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, A. B. Holmes, ”Efficient photodiodes from interpenetrating polymer networks,” Nature, 376, 498, 1995
[50] A. J. Moulé, K. Meerholz, “Controlling morphology in polymer-fullerene mixtures,” Advanced Materials, 20, 240, 2008
[51] A. J. Moulé, K. Meerholz, “Morphology control in solution-processed bulk-heterojunction solar cell mixtures,” Advanced Functional Materials, 19, 3028, 2009
[52] Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, A. J. Heeger, “Solution-processed small-molecule solar cells with 6.7% efficiency,” Nature Materials, 11, 44, 2012
[53] G. Chen, H. Sasabe, Z. Wang, X. F. Wang, Z. Hong, Y. Yang, J. Kido, “Co-evaporated bulk heterojunction solar cells with >6.0% efficiency,” Advanced Materials, 24, 2768, 2012
[54] W. I. Jeong, Y. E. Lee, H. S. Shim, T. M. Kim, S. Y. Kim, J. J. Kim, “Phtoconductivity of C60 as an origin of bias-dependent photocurrent in organic photovoltaics,” Advanced Functional Materials, 22, 3089, 2012
[55] F. H. Scholes, T. Ehlig, M. James, K. H. Lee, N. Duffy, A. D. Scully, T. B. Singh, K. N. Winzenberg, P. Kemppinen, S. E. Watkins, “Intraphase microstructure – Understanding the impact on organic solar cell performance,” Advanced Functional Materials, early view, 2013
[56] R. A. Marsh, C. Groves, N. C. Greenham, “A microscopic model for the behavior of nanostructured organic photovoltaic devices,” Journal of Applied Physics, 101, 083509, 2007
[57] R. Fitzner, C. Elschner, M. Weil, C. Uhrich, C. Korner, M. Riede, K. Leo, M. Pfeiffer, E. Reinold, E. Mena-Osteritz, P. Bäuerle, “Interrelation between Crystal Packing and Small-Molecule Organic Solar Cell Performance,” Advanced Materials, 24, 675, 2012
[58] S. Fukuzumi, T. Kojima, “Photofunctional nanomaterials composed of multiporphyrins and carbon-based π-electron acceptors,” Journal of Materials Chemistry, 18, 1427, 2008
[59] W. W. H. Wong, T. Khoury, D. Vak, C. Yan, D. J. Jones, M. J. Crossley, A. B. Holmes, “A porphyrin-hexa-peri-hexabenzocoronene-porphyrin triad: Synthesis, photophysical properties and performance in a photovoltaic device,” Journal of Materials Chemistry, 20, 7005, 2010
[60] A. Kay, M. Grätzel, “Artificial Photosynthesis. 1. Photosensitization of TiO2 Solar Cells with Chlorophyll Derivatives and Related Natural Porphyrins,” Journal of Physical Chemistry, 97, 6272, 1993
[61] W. M. Campbell, A. K. Burrell, D. L. Officer, K. W. Jolley, “Porphyrins as a light harveaters in the dye-sensatised TiO2 solar cell,” Coordination Chemistry Reviews, 248, 1363, 2004
[62] W. M. Campbell, K. W. Jolley, P. Wagner, K. Wagner, P. J. Walsh, K. C. Gordon, L. Schimidt-Mende, M. K. Nazeeruddin, Q. Wang, M. Grätzel, D. L. Officer, “Highly efficient porphyrin sensitizers for dye-sensitized solar cells,” The Journal of Physical Chemistry C, 111, 11760, 2007
[63] A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruggin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruggin, M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency,” Science, 334, 629, 2011
[64] M. D. Perez, C. Borek, P. I. Djurovich, E. I. Mayo, R. R. Lunt, S. R. Forrest, M. E. Thompson, “Organic photovoltaics using tetraphenylbenzoporphyrin complexes as donor layers,” Advanced Materials, 21, 1517, 2009
[65] S. Ryuzaki, T. Kai, Y. Toda, S. Adachi, J. Onoe, “Effects of inter-molecular charge-transfer excitons on the external quantum efficiency of Zinc-porphyrin/C60 heterojunction photovoltaic cells,” Journal of Physics D: Applied Physics, 44, 145103, 2011
[66] Y. Huang, L. Li, X. Peng, J. Peng, Y. Cao, “Solution processed small molecule bulk heterojunction organic photovoltaics based on a conjugated donor-acceptor porphyrin,” Journal of Materials Chemistry, 22, 21841, 2012
[67] M. Gouterman, “Spectra of porphyrins,” Journal of Molecular Spectroscopy, 6, 138, 1961
[68] N. M. Kronenberg, V. Steinmann, H. Bürckstümmer, J. Hwang, D. Hertel, F. Würthner, K. Meerholz, “Direct comparison of highly efficient solution- and vacuum- processed organic solar cells based on merocyanine dyes,” Advanced Materials, 22, 4193, 2010
[69] C. W. Chu, V. Shrotriya, G. Li, Y. Yang, “Tuning acceptor energy level for efficient charge collection in copper-phthalocyanine-based organic solar cells,” Applied Physics Letters, 88, 153504, 2006