| 研究生: |
簡均祐 Chien, Chun-Yu |
|---|---|
| 論文名稱: |
以氦氖雷射全像曝光製作可調液晶相位光柵之研究 Study of holographic exposure with a He-Ne laser to fabricate tunable liquid crystal phase gratings |
| 指導教授: |
許家榮
Sheu, Chia-Rong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 氦氖雷射 、全像曝光 、液晶相位光柵 、全像術 |
| 外文關鍵詞: | He-Ne laser, holographic exposure, liquid crystal phase gratings, holography |
| 相關次數: | 點閱:101 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要目的在研究以液晶混合光聚合材料並施以全像曝光製作可調式液晶相位光柵,且論文中將針對液晶相位光柵之臨界電壓、繞射效率極值等光電特性進行討論。實驗中以氦氖雷射做為曝光光源,為了達到較高的光柵繞射效率,我們針對許多實驗條件如光聚合材料濃度、曝光劑量、混合材料加熱處理等進行研究。最後,以最佳的實驗條件將混合材料之液晶盒做為全像術之物光與參考光干涉之記錄元件,並可獲得影像還原。
實驗中的光聚合物有兩種,分別是RM257與NOA65。在RM257方面的結果,對混合材料加熱處理後,可以大幅縮短曝光時間與光強度達到光柵製作之目的。然而,我們也觀察到RM257混合材料的液晶盒有『不聚合現象』發生當曝光光強度大於0.4 mW/cm2時。但若再添加另一額外的NVP材料,則『不聚合現象』便消失,如此,較高的曝光強度(如曝光強度高於0.4 mW/cm2以上)時,全像曝光製程仍可正常使用。實驗結果證明利用1 mW/cm2曝光15秒條件可以製作出繞射效率約33%之相位光柵,此數值已非常接近Raman-Nath理論值33.9%。
在NOA65方面的結果,實驗發現NOA65濃度必須高於15 wt%以上才能製作出良好的光柵結構,藉由曝光強度、曝光時間,以及樣品溫度的控制等實驗條件,其最佳可達約16%之繞射效率。
In this thesis, the main investigation is to fabricate tunable liquid crystal phase gratings by means of holographic exposure of a He-Ne laser on liquid crystal cells filled with mixture of liquid crystals/polymer composites (LCPCs). The optical performance of fabricated phase gratings is also measured and investigated including operation threshold voltages, maximum diffraction efficiency, demonstration of holographic application, and so on.
Using two different types of photocurable monomers to fabricate liquid crystal phase gratings, we also compare their optical performance of phase gratings individually fabricated with RM257 and NOA65. We find that the mixing process of RM257 and liquid crystals at a fixed higher temperature (~65˚C) significantly reduce holographic exposure time for fabricating phase gratings. A strange and inscrutable phenomenon is observed that is no photo polymerization in photo exposed areas when using photo irradiance over 0.4 mW/cm2. However, this inscrutable phenomenon disappears when extra adding a little material of NVP in original mixture. At present, the 33% diffraction efficiency is available in this study, which is very close to the maximum value of 33.9% based on Raman-Nath theory.
By contrast, 16% diffraction efficiency of the phase grating with 15 wt% NOA65 is available.
[1]S. Sagan, R. Smith, M. Popovich, “Electrically switchable Bragg grating technology for projection displays,” SPIE, 4292, 75-83 (2001)
[2]D. Gabor, “A new microscopic principle,” Nature 161, 777 (1948)
[3]E.N. Leith, J. Upatnieks, “Reconstructed wavefronts and communi cation theory,” J. Opt. Soc. Am., 52, 1123 (1962)
[4]E.N. Leith, J. Upatnieks, “Wavefronts reconstruction with continuous-
tone objects,” J. Opt. Soc. Am., 53, 1377 (1963)
[5]E.N. Leith, J. Upatnieks, “Wavefronts reconstruction with diffused illumination and three-dimensional objects,” J. Opt. Soc. Am., 54, 1295 (1964)
[6]F. Fan, A. K. Srivastava, V. G. Chigrinov and H. S. Kwok, “Switchable liquid crystal grating with sub millisecond response,” Appl. Phys. Lett., 100, 111105 (2012)
[7]D. Churchill, J. V. Cartmell, “Radiation sensitive display device containing encapsulated cholesteric liquid crystal,” US Patent 3, 578, 844 (1971)
[8]J.L. Fergason, “Encapsulated liquid crystal and method,” US Patent 4, 435, 047 (1984)
[9]R.L. Sutherland, L.V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid crystal planes,” Chem. Mater. 5, 1533, (1993)
[10]K. Tanaka, K. Kato, M. Date, “Fabrication of holographic polymer dispersed liquid crystal (HPDLC) with high reflection efficiency,” Jpn. J. Appl. Phys., 38, 277 (1999)
[11]Kossyrev. P, Sousa M.E., G. Crawford, “One- and two- dimensionally structured polymer network in liquid crystal for switchable diffractive optical application,” Adv. Funct. Mater., 14, 1227-1232 (2004)
[12]S.T. Wu, Andy Fuh, “Lasing in photonic crystals based on dye-doped holographic polymer-dispersed liquid crystal reflection gratings,” Jpn. J. Appl. Phys., 44, 977-980 (2005)
[13]R.A. Ramsey, S. C. Sharma, “Switchable holographic gratings formed in polymer-dispersed liquid crystal cells by use of He-Ne laser,” Opt. Lett., 30, 592 (2005)
[14]R.A. Ramsey, S. C. Sharma, and K. Vaghela, “Holographically formed bragg reflction gratings recorded in polymer-dispersed Liquid crystal cells using a He-Ne laser,” Appl. Phys. Lett., 88, 051121 (2006)
[15]Robert Allen Ramsey, “Holographic patterning of polymer dispersed liquid crystal materials for diffractive optics elements,” Ph. D. disserta-
tion, University of Texas at arlington (2006)
[16]松本正一・角田市良, “液晶之基礎與應用,” 第八版, 第四章,國立編譯館, 民國94年
[17]Deng-Ke Yang, Shin-Tson Wu, “Fundamentals of Liquid Crystal Devices,” Chap. 1, John Wiley & Sons (2006)
[18]Lam-Choon Khoo, “Liquid Crystals,” 2nd. Ed., Chap. 1, John Wiley & Sons (2007)
[19]Toralf Scharf, “Polarized Ligh in Liquid Crystal and Polymers,”
Chap. 6, John Wiley & Sons (2007)
[20]G. Vertogen, W. H. de Jeu, “Thermotropic Liquid Crystals, Funda-
mentals,” Chap. 9, Springer-Verlag, Berlin (1988)
[21]Amnon Yariv, Pochi Yeh, “Optical Electronics in Modern Communications,” 6th. Edition, Chap. 1, Oxford University Press Inc. (2007)
[22]F.C. Frank, “On the theory of liquid crystals,” Faraday Soc., 25, 19 (1958).
[23]Deng-Ke Yang, Shin-Tson Wu “ Fundamentals of Liquid Crystal Devices,” Chap. 5, John Wiley & Sons (2006)
[24]K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, M. Sakamoto, “Alignment Technologies and Applications of Liquid Crystal Devices,” Chap. 2, Taylor&Francis Group (2005)
[25]F.L. Pedrotti, “Introduction to Optics,” 3rd. Edition, Chap. 7, Addison Wesley (2007)
[26]J.C. Robert, B.B. Christoph, “Optical Holography,” Academic Press New York and London (1971)
[27]G. Odian, “Principle of Polymerization ,” Chap.2, 4th Edition, John Wiley & Sons (2004)
[28]Deng-Ke Yang, Shin-Tson Wu, “Fundamentals of Liquid Crystal Devices,” Chap. 11 , John Wiley & Sons (2006)
[29]P. Yeh, “ Introduction to Photorefractive Nonlinear Optics, ” Wiley, New York (1993)
[30]H.J. Eichler, P. Günter, D.W. Pohl, “Laser-Induced Dynamic Grating,” Springer-Verlag Berlin (1986)
[31]R. Magnusson and T.K. Gaylord, “Diffraction efficiencies of thin phase gratings with arbitrary grating shape,” J. Opt. Soc. Am., 68, 806 (1978)
[32]P. Hariharan, “Optical Holography Principles, techniques, and applications,” 2nd. Edition, Chap. 2, Cambridge University Press (1996)
[33]J.W. Goodman,“ Introduction to Fourier Optics,” 3rd. Edition, Chap.9, Roberts& Company Publishers (2005)
[34]Lam-Choon Khoo, “Liquid Crystals,” 2nd. Edition, Chap. 1, John Wiley & Sons (2007)
[35]張仕仁, “用雙丙烯酸酯薄膜記錄氦氖雷射全像干涉光場光訊息之研究,” 國立中山大學光電工程學系碩士論文(2011)
[36]Norland Products Inc. P.O. BOX 145, North Brunswick, NJ, 08902, USA
[37]Spectra group Limited Inc., “Photoinitiators, enabling technology in photochemistry photochemical products and services contract research and development”
[38]蔡宗穎, “利用氦氖雷射全息曝光製作液晶盒具有快速光學反應能力之研究,” 國立成功大學光電工程學系碩士論文(2013)
[39]P.A. Kossyrev, J. Qi, N.V. Priezjev, R.A. Pelcovits, G.P. Crawford, “Virtual Surfaces, Director Domains, and the Freedericksz Transition on Polymer-Stabilized Nematic Liquid Crystal,” Appl. Phys. Lett., 81, 2086 (2002)
校內:2016-08-22公開