| 研究生: |
張沛頎 Chang, Pei-Chi |
|---|---|
| 論文名稱: |
熱塑性塑膠微射出成型技術之研究 Study of Thermoplastic Micro Injection Molding Technology |
| 指導教授: |
黃聖杰
Hwang, Sheng-Jye |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 微射出成型、變模溫、紅外線、真空模穴 |
| 外文關鍵詞: | Infrared, Variotherm, Micro injection molding, Vacuum mold cavity |
| 相關次數: | 點閱:131 下載:26 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熱塑性塑膠微射出成型技術的主要關鍵在於高性能的微射出成型機、微模仁加工、精密模具設計製作、脫模輔助裝置與輔助成型技術。微射出成型機的需求是準確的計量能力、高射出率、反應快與穩定的機構等。
本研究為了發展熱塑性塑膠微射出成型技術,分別以開發一外掛式微射出成型模組以及輔助成型的紅外線變模溫系統與真空模穴系統來進行探討。首先,發展一個新概念的外掛式微射出成型模組。此系統設計成一個分離模組,其具有熱澆道柱塞式射出成型單元且可被應用在小噸數 (30~100噸)油壓或全電往複式螺桿射出成型機上。外掛式微射出成型模組固定在射出機的固定板與模具中間。如此一來往複式螺桿射出單元便轉換成押出單元。經由此外掛式微射出成型模組,大部份的往複式螺桿射出成型機便提升為高精度兩階段射出成型機且具有微射出精密計量的能力。
第二個部份是紅外線模具表面快速加熱系統於射出成型之研究。在此發展一個混合三維光線軌跡與暫態熱傳模擬的方法來計算受到紅外線加熱模具表面的熱狀態。其中商用光學分析軟體TracePro被用來模擬吸收紅外線模面的熱通量。之後使用ANSYS來計算模仁表面二維與三維的暫態熱傳。紅外線加熱模面時,也使用數種型式的反射鏡面來研究其加熱效果。所模擬的溫度結果與使用熱影像儀的實驗測量值相當接近。之後,利用此模擬方法來研究對於微射出成型紅外線快速表面加熱反射鏡面的幾何影響,並使用田口方法來找出近似最佳的反射鏡面。
此外,針對射出成型設計並驗證一個低成本與實用的紅外線快速表面加熱系統。此系統被設計來組裝在模具上並使用一個控制系統來操作燈座的運動與鹵素燈的開關。使用四個鹵素燈(每個1kW)做為加熱模仁表面的光源。採用一個修改的螺旋流模具來驗證紅外線快速表面加熱系統在實際射出成型的效益。分別使用三種塑膠材料聚丙烯(PP)、壓克力(Acrylic)與聚碳酸脂(PC)來進行螺旋流射出成型實驗。假如使用近似球面反射鏡與燈泡集中排列的方式加熱,模仁表面的溫度可以被加熱到最高。模仁中央的溫度經過15秒紅外線加熱可以從83°C上升到188°C。因為模仁表面的模具在充填前高於塑料的熱變形溫度,因此螺旋流成品的長度會增長。也進行研究對於薄長件成品模穴其紅外線加熱位置的影響,如此驗證使用較小紅外線加熱面積於較大模具表面的可能性。同時,使用紅外線模仁快速表面加熱也能相當有效地輔助微針陣列結構的射出成型,其微針尖端的複製性相當高。
最後,建立一個簡單的真空模穴系統並用來研究真空模穴對射出成型的影響。在實驗中,射出前模穴壓力可以達到25 torr。從成型的結果可知,使用真空模穴的成品複製性比未使用真空模穴的還要好。經由抽真空,未充填完成的現象便消失。
經由本文中的研究結果,對於熱塑性塑膠微射出成型技術的成品複製性與解決方法確實有所助益。
The keys of the micro injection molding technology are high performance injection molding machine, micro mold insert, precise micro mold base, demolding device and auxiliary system. The requirements of the micro injection molding machine are accurate metering (dosing), high injection rate, short response time and stable mechanism etc.
In this research, in order to study the thermoplastic micro-injectiom molding technology, an external micro-injection molding module, an infrared variotherm system and a vacuum mold system were developed and investigated. At the beginning, a novel concept of external micro-injection molding module was presented. The system was design as a separate module, which was a hot runner plunger-type injection molding module and could be applied on small (30~100 tons) reciprocating screw hydraulic or fully electric injection molding machines. The micro injection molding module was fixed between the stationary platen and mold of a reciprocating screw injection molding machine. The function of the reciprocating screw injection molding machine was used as an extrusion unit. With this micro injection molding module, most reciprocating screw injection molding machines could be upgraded as high precision two-stage injection molding machines and have the capability of precise metering for micro injection molding.
The second part of the research was the study of a rapid infrared surface heating system for injection molding. A three-dimension ray tracing and transient thermal simulation was developed to evaluate the thermal condition of injection mold surface with infrared surface rapid heating system. Several types of reflectors were applied to study the heating capability of the rapid surface heating system. A commercially available optical analysis program, TracePro, was used to simulate the infrared absorption of the mold surface. The surface temperature of the mold insert was evaluated by 2D and 3D transient thermal analysis with a commercial software, ANSYS. The results from simulation and thermal image measurement system agree well. Then, the geometry influence of reflectors for infrared rapid surface heating on micro-injection molding was studied. Taguchi method was adopted to find the close to optimal reflector geometry for rapid surface heating of micro-injection molding.
A low cost and practical infrared rapid surface heating system for injection molding was designed and investigated. The system was designed to assemble on the mold and a control system was used to operate the motion of the lamp holder. Four infrared halogen lamps (1kW each) were used as the radiative source to heat the surface of the mold insert. A modified spiral flow mold was used to test the enhancing filling ability of the rapid surface heating system. Three resins, PP, Acrylic and PC were molded in the spiral flow injection molding experiments. If spherical reflector and centralized lamp configuration were used, the temperature at the center of the mold surface is the highest. The temperature of mold center surface was raised from 83°C to 188°C with 15 seconds of infrared heating. Because the surface temperature of the mold insert was higher than the heat deflection temperature of resins before filling, the flow distance of resins in the modified spiral flow mold would be increased. The location effect of the infrared surface heating system on a thin-long cavity was studied to demonstrate the possibility of using smaller infrared heating area on a large mold surface. A micro-probe cavity also demonstrated that with the assistance of infrared heating technology the replication ability of a micro-probe can be greatly improved.
Finally, a simple vacuum mold cavity system was established to study the effect of the vacuum mold cavity for injection molding. In the experiment, the pressure of the mold cavity could reach 25 torr before injection. From the result of the molding, it was observed that the replication ability of vacuum mold cavity was better than that without vacuum. With vacuum, the unfilled area in the part was gone.
According to the results of the study, the technique and replication of the thermalplastic micro-injection molding can be improved.
[1]. Pei-Chi Chang and Sheng-Jye Hwang, “Injection molding of microprobe Array Parts,” Journal of Polymer Research, Vol.13, pp.25-32, 2006.
[2]. Oliver Kemmann and Litz Weber, “Micro Moulding Behaviour of Engineering Plastics,“ Proceedings of SPIE - The International Society for Optical Engineering, Vol.3680, n I, pp.464-471, 1999.
[3]. Liyong Yu, Yi-Je Juang, Kurt W. Koelling and L. James Lee, “Flow and Heat Transfer Simulation of Thin-Wall Injection Molding with Microstructures,“ Annual Technical Conference-ANTEC, Conference Proceedings, 1, pp.602-606, 2003.
[4]. M.Niggemann, W. Etrfeld and L. Weber, “Miniaturized Plastic Micro Plates for Applications in HTS,“ Microsystem Technologies, 6, pp.48-53, 1999.
[5]. Yu-Chuan Su, Jatan Shah and Liwei Lin, “Implementation and Analysis of Polymeric Microsturcture Replication by Micro Injection Molding,” Journal of Micromechical. and Microengineering., 14, pp.415-422, 2004.
[6]. Y. K. Shen, S. L. Yeh and S. H. Chen, “Three-Dimensional Non-Newtonian Computations of Micro-Injection Molding with the Finite Element Method,” International Communication Heat and Mass Transfer, Vol.29, 5, pp.643-652, 2002.
[7]. Y. K. Shen, Y. J. Shie and W. Y. Wu, “Extension Method and Numerical Simulation of Micro-Injection Molding,” International Communication Heat and Mass Transfer, Vol.31, 6, pp.795-804, 2004.
[8]. O. Rötting, W. Röpke, H. Becker and C. Gärtner, “Polymer Microfabrication Technologies,” Microsystem Technologies, Vol.8, pp.33-36, 2002.
[9]. V. Piotter, T. Hanemann, R. Ruprecht and J. Haußelt, “Injection Molding and Related Techniques for Fabrication of Microstructures,” Microsystem Technologies, pp.129-133, 1997.
[10]. Y-B Bang and S Ito, “Linear Motor Driver Ultrahigh-Speed Injection Moulding Machine,” Proc Instn Mech Engrs Part B: J Engineering Manufacture, Vol.216, pp.773-781, 2002.
[11]. R. Ruprecht, T. Gietzelt, K. Műller, V. Piotter and J. Haußelt, “Injection Molding of Microstructured Components From Plastics, Metals and Ceramics,” Microsystem Technologies, Vol.8, pp.351-358, 2002.
[12]. R. Ruprecht, T. Benzler, T. Hanemann, K. Műller, J. Konys, V. Piotter, G. Schanz, L. Schmidt, A. Thies, H. Wöllmer and J. Haußelt, “Various Replication Techniques for Manufacturing Three-Dimensional Metal Microstructures,” Microsystem Technologies, Vol.4, pp.28-31, 1997.
[13]. C. Tan, M. Nakao, T. Go, K. Matsumoto and Y. Hatamura, “Injection Molding for Microstructures Controlling Mold-Core Extrusion and Cavity Heat-Flux,” Microsystem Technologies, Vol.9, pp.188-191, 2003.
[14]. Liyong Yu, Chee Guan Koh, L. James Lee and Kurt W. Koelling, “Experimental Investigation and Numerical Simulation of Injection Molding with Micro-Features,” Polymer Engineering and Science, Vol.42, 5, pp.871-888, 2002.
[15]. W. Bacher, K. Bade, B.Matthis, M. Saumer and R. Schwarz, “Fabrication of LIGA Mold Inserts,” Microsystem Technologies, Vol.4, pp.117-119, 1998.
[16]. D. Yao, “Injection Molding High Aspect Ratio Microfeatures,” Journal of Injection Molding Technology, Vol.6, 1, pp.11-17, 2002.
[17]. S.-P. Yang and W.-B. Young, “Microinjection Molding with LIGA-Like Process,” Internal Polymer Processing, XIX, 2, pp.180-185, 2004.
[18]. Rean-Der Chien, Wen-Ren Jong and Shia-Chung Chen, “Study on Rheological Behavior of Polymer Melt Flowing Through Micro-Channels Considering the Wall-Slip Effect,” Journal of Micromechical and Microengineering, Vol.15, pp.1389-1396, 2005.
[19]. S. C.Nian and S. Y. Yang, “Molding of Thin Sheets Using Impact Micro-Injection Molding,”Internal Polymer Processing, XX, 4, pp.441-448, 2005.
[20]. 吳國英, “微射出單元之設計與分析,” 國立高雄第一科技大學機械與自動化工程系,碩士論文, 2003.
[21]. 楊益成, “輻射快速加熱模具表面之實驗研究,” 國立成功大學工程科學系專班, 碩士論文, 2005.
[22]. V. Piotter, W. Bauer, T. Benzler and A. Emde, “Injection Molding of Components for Microsystems,” Microsystem Technologies, Vol.7, pp.99-102, 2001.
[23]. V. Piotter, K. Mueller, K. Plewa, R. Ruprecht, J. Hausselt, “Performance and Situlation of Thermoplastic Micro Injection Molding,” Microsystem Technologies, Vol.8, pp.387-390, 2002.
[24]. M. Heckele and W. K. Schomburg, “Review on Micro Molding of Thermoplastic Polymers,” Journal of Micromechical and Microengineering, Vol.14, R1-R14, 2004.
[25]. F. Johannaber, “Injection Molding Machine: A User’s Guide,” Hanser, pp.198-202, 1983.
[26]. Dominick V. Rosato and Donald V. Rosato, “Injection Molding Handbook,” Van Nostrand Reinhold Company Inc., pp.41-44, 1985.
[27]. J. Zhao, R. H. Mayes, GE Chen, Hong Xie and Poh Sing Chan, “Effects of Process Parameters on the Micro Molding Process,” Polymer Engineering and Science, Vol.43, 9, pp.1542-1554, 2003.
[28]. W. Michaeli, A. Spennemann and R. Gartner, “New Plastification Concepts for Micro Injection Moulding,” Microsystem Technologies, Vol.8, pp.55-57, 2002.
[29]. 張智仁, “模具外掛熱澆道型微射出單元的開發,” 國立成功大學機械工程系,碩士論文, 2003.
[30]. M.S. Despa, K.W. Kelly and L.R. Collier, “Injection Molding of Polymeric LIGA HARMs,” Microsystem Technologies, Vol.6, pp.60-66, 1999.
[31]. S. C. Chen, H. S. Peng, J. A. Chang and W. R. Jong, “Simulation and Verifications of Induction Heating on A Mold Plate,” International Communication Heat and Mass Transfer, Vol.31, 7, pp.971-980, 2004.
[32]. Shia-Chung Chen, Wen-Ren Jong, Jen-An Chang, “Dynamic Mold Surface Temperature Control UsingInduction Heating and Its Effects on the SurfaceAppearance of Weld Line,” Journal of Applied Polymer Science, Vol. 101, pp.1174-1180, 2006.
[33]. J. A. Chang, S. C. Chen and J. C. Cin, “Rapid Mold Temperature Controlon Micro Injection Molded Partswith High Aspect Ratio Micro-Features,” ANTEC 2006, pp.1275-1279, 2006.
[34]. K. M. B. Jansen, “Heat Transfer in Injection Moulding Systems with Insulation Layers and Heating Elements,” International Journal of Heat and Mass Transfer, Vol.38, 2, pp.309-316, 1995.
[35]. D. Yao, B. Kim, “Development of Rapid Heating and Cooling Systems for Injection Molding Applications,” Polymer Engineering and Science, Vol.42, 12, pp.2471-2481, 2002.
[36]. “Infrared Basics and Technology,” website of Heraeus Noblelight Co. Ltd.
[37]. F. Y. Sorrell, S. Yu and W. J. Keither, “Methodology for Analysis of RTCVD Systems,” IEEE Transactions on Semiconductor Manufacturing, Vol.8, 3, pp.280-285, 1995.
[38]. A. V. Kolpakov, T. M. Makhviladze, A. V. Panjukhin, O. S. Volchek and A. F Erofeev, “Comprehensive RTP Modeling and Simulation Including Thermal Stress Analysis and Feature Size Optical Effects,” IEEE Technical Digest - International Electron Devices Meeting, 541, pp.21.1.1-21.1.4, 1994.
[39]. S. Yu, F. Yates Sorrell and William J. Keither, “Temperature Control Strategies for RTP Systems,” IEEE, pp.229-234, 1993.
[40]. H. Habuka, T. Otsuka, M. Mayusumi, M. Shimada and K. Okuyama, “A Direct Approach for Evaluating the Thermal Condition of a Silicon Substrate under Infrared Rays and Specular Reflectors,” Journal of The Electrochemical Society, Vol.146, 2, pp.713-718, 1999.
[41]. H. Habuka, T. Otsuka, M. Shimada and K. Okuyama, “Thermal Conditions in Rapid Thermal Processing System Using Circular Infrared Lamp,” Journal of Electrochemical Society, Vol.147, 12, pp.4660-4664, 2000.
[42]. M. Pettersson and S. Stenström, “Modelling of an Electric IR Heater at Transient and Steady State Conditions Part I: Model and Validation,” International Journal of Heat and Mass Transfer, Vol.43, pp.1209-1222, 2000.
[43]. M. Pettersson and S. Stenström, “Modelling of an Electric IR Heater at Transient and Steady State Conditions Part I: Modelling a Paper Dryer,” International Journal of Heat and Mass Transfer, Vol.43, pp.1223-1232, 2000.
[44]. T. Miyanaga and Y. Nakano, “Radiation Heat Transfer in Three-Dimensional Closed Space Including Diffuse and Specular Surfaces,” Heat Transfer-Asian Research, Vol.32, 2, pp.108-129, 2003.
[45]. T. Saito and I. Satoh, “A New Concept of Active Temperature Control for an Injection Molding Process Using Infrared Radiation Heating,” Polymer Engineering and Science, Vol.42, 12, pp.2418-2429, 2002.
[46]. S. Kim, R. Trichur, G. Beaucage, C. H. Ahn, and B. H. Kim, “New Plastic Microinjection Molding Technique for Extremely Tall Plastic Microstructures Using Remote Infrared Radiation Heating Method,” Proceedings of the 10th Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, SC, June 2-6, pp.206-209, 2002.
[47]. anon, http://www.krauss-maffei.de
[48]. 侯明峰, “快速熱處理時的晶圓溫度均勻性,” 國立成功大學機械工程系,碩士論文, 2003.
[49]. Frank P. Incropera and David P. DeWitt, “Introduction to Heat Transfer,” JOHN WILEY & SONS, Third Edition, pp.8, 1996.
[50]. The online material information resource, http://www.matweb.com
[51]. Frank P. Incropera and David P. DeWitt, “Introduction to Heat Transfer,” JOHN WILEY & SONS, Third Edition, pp.767, 1996.