簡易檢索 / 詳目顯示

研究生: 蕭明宇
Xiao, Ming-Yu
論文名稱: 內置彈艙流場模擬及分析
Flow Simulation and Analysis on Internal Weapons Bay
指導教授: 林三益
Lin, San-Yih
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 66
中文關鍵詞: 矩形空穴聲壓級長深比
外文關鍵詞: Cavity, L/D, SST-DES, SPL, frequency mode
相關次數: 點閱:79下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用商用軟體Ansys Fluent,對內置彈艙之矩形空穴(Cavity)模型進行數值模擬和聲場分析。使用SST-DES 混合模型,驗證在馬赫數於0.95之穿音速的條件下,空穴後壁面上之監測點K18與底部監測點K16之聲壓級SPL(Sound Pressure Level)分佈,以及空穴內部的流場分佈。之後再比較長深比4.5與長深比6兩者空穴之間後壁面上監測點之聲壓級的峰值。再來探討一矩形腔體物理模型L31其在開口處有鋸齒形狀與無鋸齒形狀對內部聲場所造成的差異性。此外並針對L31的物理模型彈艙內放置一枚飛彈,以此為機處探討攻角姿態於0、3以及5度情況下,彈艙模型內部的聲場變化,並用監測點來尋找可能產生的共振頻率與峰值。最後再探討飛彈的擺放方式來做分析,來探討不同擺放方式對後壁面頻率模態的影響。
    本論文首先進行軟體驗證,空穴之聲場與美國空軍試驗中心風洞數據作比對,以此增加模擬數據可信度。本論文對L31進行物理模型建模,其大小以實際現代戰機尺寸進行設計,再運用上述驗證所得到的經驗設定,設定每組模擬,以此預測不同情況下L31內部與外部流場之物理量分布,以及重點分析的所感興趣之監測點的聲場頻譜圖數據。藉此分析在類似現代戰機的彈艙在艙門開啟的情況時,彈艙內部是否會因為聲壓級而對結構上可能對戰機產生的危害,以及提前預測出可能會與彈艙內部結構共振的頻率峰值。

    The flow fields and sound pressure level of an internal weapon bay with rectangular cavity model of 4.5 were numerically simulated by using commercial software Ansys Fluent. The SST-DES hybrid turbulence model are applied. First, the Sound Pressure Level(SPL) distribution of the monitoring point K18 on the rear wall of Cavity and the bottom monitoring point K16 on the condition of Mach number 0.95 are simulated and compared with the known data. The peak sound pressure level of the monitoring point on the rear wall between the cavity between the L/D=4.5 and the L/D=6 are investigated. Also the difference between a rectangular cavity physical model L31 with a sawtooth shape at the opening and a non-sawtooth shape to the internal acoustic field. In addition, for the L31 physical model, a missile was placed in the bomb bay to investigate the sound field changes inside the bomb bay model at angles of attack of 0, 3, and 5 degrees. The possible resonance frequencies and peaks are analyzed. Finally, we discuss the placement of missiles for analysis to discuss the effect of different placement on the frequency mode of the rear wall.

    摘要....................................................I Extent Abstract........................................II 誌謝....................................................V 目錄...................................................VI 表目錄.................................................IX 圖目錄..................................................X 符號說明...............................................XIII 第一章 緒論..............................................1 1-1 內容大綱.............................................1 1-2 研究動機.............................................2 1-3 文獻回顧.............................................3 第二章 統御方程式與數值方法................................5 2-1 納維爾-斯托克斯方程式................................5 2-2 紊流模型.............................................6 2-2-1 Reynolds-averaged Navier-Stokes(RANS) equations...7 2-2-2 Shear Stress Transport(SST) k- Two-Equation Model.8 2-2-3 Large Eddy Simulation(LES).......................11 2-2-4 Detached Eddy Simulation(DES)....................12 2-3 數值方法............................................13 2-4 網格生成............................................14 2-5 Fast Fourier Transform(FFT) 快速傅立葉轉換..........14 第三章 研究方法.........................................16 3-1 三維矩形腔體驗證.....................................16 3-2 三維矩形腔體內置模型飛彈驗證..........................17 3-3 長深比4.5與長深比6之cavity比較.......................18 3-4 矩形腔體L31開口處有無鋸齒狀幾何模擬...................18 3-5 矩形腔體L31內置飛彈模擬..............................20 3-6 後處理.............................................21 第四章 結果與討論........................................22 4-1 三維矩形腔體驗證結論.................................22 4-1-1 三維矩形腔體時間獨立性分析..........................23 4-1-2 三維矩形腔體網格獨立性分析..........................24 4-1-3 後壁面峰值模態比較.................................24 4-2 三維矩形腔體內置模型飛彈驗證結論......................25 4-3 長深比4.5與長深比6之cavity比較結論....................26 4-4 矩形腔體L31開口處有無鋸齒狀幾何模擬結論................26 4-5 矩形腔體L31內置飛彈模擬結論...........................28 第五章 結論與未來建議....................................30 5-1 結論...............................................30 5-2 未來建議............................................33 參考文獻................................................34

    [1] J. E. Rossiter, Wind Tunnel Experiments on The Flow Over Rectangular Cavities at Subsonic and Transonic Speeds, Misnstry of Avuation, 1966.
    [2] L. East, Aerodynamically induced resonance in rectangular cavities, J. SoundVibr, Vol.3, Issue 3, pp. 277-287, 1966.
    [3] E. B. Plentovich, Jr. Stallings, R. L., M. B. Tracey, Experimental Cavity Pressure Measurements at Subsonic and Transonic Speeds-Static Pressure Results, NASA, TP-3358, 1993.
    [4] R. L. Stallings, . B. Plentovich, M. B. Tracy, M. J. Hemsch, Measurements of store forces and moments and cavity pressures for a generic store in and near a box cavity at subsonic and transonic speeds, technical report no. NASA TM-4611, NASA, USA, 1995.
    [5] R. E. Dix, R. C. Bauer, Experimental and Theoretical Study of Cavity Acoustics, AEDC-TR-99-4, 2000.
    [6] R. H. Nichols, Comparison of Hybrid Turbulence Models for a Circular Cylinder and Cavity, AIAA Journal, Vol. 44, No. 6, pp. 1207-1219, 2006.
    [7] R. H. Nichols, S. Westmoreland, Comparison of Computational Dynamics Approaches for Simulating Weapon Bay Flows, Journal of Aircraft, Vol.44, No.3, pp.1019-1024, 2007.
    [8] K. Zore, G. Parkhi, B. Sasanapuri, A. Varghese, Ansys Mosaic Poly-Hexcore Mesh for High-Lift Aircraft Configuration, 21th Annual CFD Symposium, August 8-9, NAL-Bangalore India. Submitted, 2019.
    [8] N. E. Murray, L. S. Ukeiley, J. L. Whitten, Flow Field Dynamics in Open Cavity Flows, AIAA 200-2428, 2006.
    [9] K. Krishnamurty, Acoustic Radiation form Two-Dimensional Rectangular Cutouts in Aerodynamic Surfaces, NACA-TN-3487, 1955.
    [10] V. Zecevic, J. A. Geogheganl, B. Thnorbel, G. A. Violl, Aero-Acoustic Simulations of an Empty Cavity, Australasian Fluid Mechanics Conference, 2016.
    [11] E. F. Sheta, R. E. Harris, B. George, L. Ukeiley, Loads and Acoustics Prediction on Deployed Weapons Bay Doors, AIAA 2015-3018, 2015.
    [12] 吳繼飛, 羅新福, 徐來武, 範召林, 內埋武器艙關鍵氣動及聲學問題研究, 空氣動力學報, 第34卷, 第4期, 頁數:482-489, 2016.
    [13] H. Heller, D. Bliss, Aerodynamically Induced Pressure Oscillations in Cavities-Physical Mechanisms and Suppression Concepts, Air Force Flight Dynamics Laboratory, AFFDL-TR-74-133, 1975.
    [14] M. L. Purdonl, C. F. Hetreed, M. L. Hudson, F-35 Pre-Flight Store Separation Analyses: Innovative Techniques for Affordability, AIAA 2009-102, 2009.
    [15] 張群峰, 閆盼盼, 黎軍, 內埋式彈艙與彈體相互影響的精細模擬, 兵工學報, 第37卷, 第12期, 頁數:2367-2373, 2016.
    [16] P. Nayyar, G. N. Barakos, K. J. Badacok, Numerical Study of Transonic Cavity Flows Using Large-Eddy and Detache-Eddy Simulation, The Aeronautical Journal, Vol. 111, No. 1117, pp. 153-164, 2007.
    [17] D. H. Kim, J. H. Choi, O. J. Kwon, Detached eddy simulation of weapons bay flows and store separation, Comput. Fluids 121, pp. 1-10, 2015.
    [18] S. Dykas, S. Rulik, W. Wroblewski, Numerical Modelling of Aerodynamic Noise in Compressible Flows, Open Journal of Fluid Dynamics, Vol. 2, No. 3, pp. 65-69, 2012.
    [19] N. Zhuang, F. S. Alvi, M. B. Alkislar, C. Shihx, Supersonic Cavity Flows and Their Control, AIAA Journal, Vol. 44, No. 9, pp. 2118-2128, 2006.
    [20] A. J. Saddington, V. Thangamani, K. Knowles, Comparison of Passive Flow Control Methods, Journal of Aircraft, Vol. 53, No. 5, pp. 1439-1447, 2016.
    [21] P. K. Maurya, C. Rajeev, R. V. Kumar, A. Vaidyanathan, Effect of Aft Wall Offset and Ramp on Pressure Oscillation from Confined Supersonic Flow Over Cavity, Experimental Thermal and Fluid Science, Vol. 68, pp. 559-573, 2015.
    [22] 石忠憲, 林三益, 翼尖帆應用於水平軸封機數值模擬, 國立成功大學, 航空太空工程學系, 2014.
    [23] M. H. Morton, J. T. Cox, E. A. Powell, Initial Assessment of a CFD Application for Predicting Jet Fighter Aircraft Cavity Bay Acoustics for Subsonic and Supersonic Aircraft States, AIAA-2012-1624, 2012.
    [24] S. F. McGrath, L. L. Jr. Shaw, Active Control of Shallow Cavity Acoustic Resonance, AIAA-1996-1949, 1996.
    [25] 岳奎志, 齊紅德, 柳文林, 郁大照, 超聲速隱聲殲轟機概念設計數值模擬, 海軍航空工程學院學報, 第29卷, 第5期, 頁數: 449-454, 2014.
    [26] F. Mendonca, R. Allen, J. Charentenay, CFD Prediction of Narrowband and Broadband Cavity Acoustics at M=0.85, AIAA-2003-3303, 2003.
    [27] N. Zhang, H. C. Shen, H. Z. Yao, Numerical Simulation of Cavity Flow Induced Noise by LES and FW-H Acoustic Analogy, Journal of Hydrodynamics, Vol. 22, No. 5, pp. 242-247, 2010.
    [28] R. A. Chaplin, T. J. Brich, The Aero-Acoustic Enironment Within the Weapons Bay of a Generic UCAV, AIAA-2012-3338, 2012.
    [29] B. P. Hallissy, N. S. Hariharan, Perdiction of Unsteady Flow in UCAV Weapon’s Bay Using CREATE-AV Kestrel, AIAA-2014-0751, 2014.
    [30] G. J. M. Loupy, G. N. Barakos, N. J. Taylor, Cavity Flow over a Transonic Weapons Bay During Door Operation. Journal of Aircraft, Journal of Aircaraft, Vol. 55, No. 1, pp. 339-354, 2018.
    [31] C. Kannepalli, C. Chartand, R. Birkbeck, N. Sinha, Computational Modeling of Geometrically Complex Weapons Bays, AIAA-2011-2774, 2011.
    [32] A. Hamed, D. Basu, K. Das, Detached Eddy Simulations of Supersonic Flow Over Cavity, AIAA-2003-549, 2003.
    [33] 馮玉明, 小風機噪音模擬數值計算模式開發, 行政院原子能委員會計劃研究報告, 2013.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE