| 研究生: |
林柏宏 Lin, Po-Hung |
|---|---|
| 論文名稱: |
內部光學損耗對半導體量子點雷射臨界電流密度之影響 Effect of Internal Optical Loss on Threshold Characteristics of Semiconductor Quantum Dot Laser |
| 指導教授: |
陳鐵城
Chen, Tei-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 量子點雷射 、臨界電流密度 、速率方程 、內部損耗 |
| 外文關鍵詞: | Internal loss, Rate equation, Quantum dot laser, Threshold current density |
| 相關次數: | 點閱:133 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
量子點雷射在近幾年越來越受到世界各國的重視,紛紛的投入大量的資金來研究與開發,主要是因為以量子點為發光層的雷射元件具有更低的電流密度、更高的光增益、更高的特徵溫度和更寬的調製帶寬等優點,可應用於紅外線偵測器、光碟機讀寫頭,以及現今最熱門的光纖通訊等方面。
理論上當不考慮內部損耗時,我們可以發現自由載子佔據能階的機率越大時,雷射發光強度會越強,在本文的研究中,當我們將外部損耗固定,來考慮內部損耗效應時,可以發現雷射作用時會有兩個特殊的臨界值和相對應的第一臨界電流密度與第二臨界電流密度,所以雷射要能夠作用,須在臨界值的範圍內,而電流密度也是如此。對溫度效應來說,根據理論及假設的結構和所獲得的參數值等條件下,在270K到307K的溫度範圍內,當溫度低時,量子點層中的載子無法藉由外加電流產生的熱逃脫到光侷限層中,大部分的載子會侷限在量子點層中,此時載子來回的激發,很容易達到雷射作用,所以溫度低時,雷射作用的雙臨界值區間會比高溫來的大,此外雷射作用時之結構的最終與最初之臨界參數也會隨溫度變化。
The technology of quantum dot laser has attracted great attention recently due to the low threshold current density, higher characteristic temperature, and wider modulation band-width. Its applications include the read write head of the CD-ROM drive, infrared remote sensing the optical fiber and so on. Theoretically, we can find that the more level occupancy in the absence of internal loss, the more intensity of laser will be generated. Considering the fixed external loss and the internal loss on the threshold characteristics, the free-carrier density does not pin in the presence of light generation, and the free-carrier-density dependence of internal loss gives rise to the existence of the second lasing threshold above the conventional threshold. Above the second threshold, the light–current characteristic is two-valued up to a maximum current at which the lasing is quenched. As the temperature effect is concerned, we obtain a range form 270K to 307K under specific conditions. When the temperature becomes higher, the range between two lasing thresholds will be less than the case of lower temperature. In additions, the structure critical tolerable parameters are closely dependent on temperature.
[1] http://optics.org/articles/news/10/9/13/1
[2] L. V. Asryan and S. Luryi, “Effect of Interal Optical Loss on Threshold Characteristics of Semiconductor Lasers With a Quantum-Confined Active Region,” IEEE J. Quantum Electron. ,vol. 40, pp. 833-842, July 2004.
[3] D. Z. Garbuzov, A.V. Ovchinnikov, N. A. Pikhtin, Z. N. Sokolova, and V.B. Khalfin, “Experimental and theoretical investigations of singularities of the threshold and power characteristics of InGaAsP/InP separate-confinement double-heterostructure lasers ,” Sov. Phys. Semicond., Vol. 25, no. 5, pp. 560–564, 1991.
[4] M. Asada, A. R. Adams, K. E. Stubkjaer, Y. Suematsu, Y. Itaya, and S.Arai, “The temperature dependence of the threshold current of GaInAs-PAnP DH lasers,” IEEE J. Quantum Electron., Vol. QE-17, pp. 611,1981.
[5] C. H. Henry, R. A. Logan, F. R. Merritt, and J. P. Luongo, “The effect of intervalence band absorption on the thermal behavior of InGaAsP lasers,” IEEE J. Quantum Electron., Vol. QE-19, pp. 947–952, 1983.
[6] M. Asada, A. Kameyama, and Y. Suematsu, “Gain and intervalence band absorption in quantum-well lasers,” IEEE J. Quantum Electron., Vol.QE-20, pp. 745, 1984.
[7] N. A. Gun’ko, V. B. Khalfin, Z. N. Sokolova, and G. G. Zegrya, “Optical loss in InAs-based long-wavelength lasers,” J. Appl. Phys., Vol. 84, no.1, pp. 547–554, 1998.
[8] G. P. Agrawal, and N. K. Dutta, “Semiconductor Lasers”, Van Nostrand Reinhold, 1993.
[9] R. Dingle and C. H. Henry, “Quantum effects in heterostructure,” U.S. Patent No. 3982207, 21, September, 1976.
[10] Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett.,Vol. 40, no. 11, pp. 939–941,1982.
[11] M.Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron.,Vol. 22, no. 9, pp. 1915–1921, 1986.
[12] Y. Miyamoto, Y. Miyake, M. Asada, and Y. Suematsu, “Threshold current density of GaInAsP/InP quantum-box lasers,” IEEE J. Quantum Electron., Vol. 25, pp. 2001–2006, 1989.
[13]Kirstaedter.N.,N.N.Ledentsov,M.Grundmann,D.Bimberg,V.M.Ustinov,S.S.Ruvimov
,M.V.Maximov,P.S.Kop’ev,Zh.I.Alferov,U.Richter,P.Werner,U.Gosele,and J.Heydenreich , “Low threshold, large T0 injection laser emission from (InGa)As quantum dots,” Electron. Lett., Vol. 30, no. 17, pp. 1416–1417, 1994.
[14] M. Grundmann and D. Bimberg, “Gain and threshold of quantum dot lasers: Theory and comparison to experiments,” Jpn. J. Appl. Phys., vol. 36, pp. 4181–4187, 1997.
[15] L. V. Asryan and R. A. Suris, “Temperature Dependence of the Threshold Current Density of a Quantum Dot Laser,” IEEE J. Quantum Electron., Vol. 34, no. 5, pp. 841–850, 1998.
[16] W. Z. Guo*, C. Y. Hai, L. F. Qi, Xu Bo, “Self-assembled quantum dots, wires and quantum-dot lasers, ”Journal of Crystal Growth, pp. 1132–1139,2001.
[17] C.Ni.Allen , P.J.Poole , P.Barrios , P.Marshall , G.Pakulski, S.Raymond and S.Fafard, “External cavity quantum dot tunable laser through 1.55 μm,” Physica E., Vol 26, no 1-4, p 372-376, 2005.
[18] D. Bimberg, M. Grundmann, and N. N. Ledentsov, “Quantum dot heterostructure,” John Wiley & Sons, 1999.
[19] http://nano.nchc.org.tw/dictionary/quantum_dots.html
[20] http://www.fzu.cz/oddeleni/povrchy/mbe/mbe.php3
[21] 陳俊宇,含碳介層之鍺/矽(100)量子點之應變分析,國立成功大學機械研究所,碩士論文,2003.
[22] 川合 知二,日本原著,圖解奈米科技,工業技術研究院.
[23] 謝育民,電子在半導體量子點中的傳輸性質與穿遂率,國立成功大學機械研究所,碩士論文,2004.
[24] http://www.chemnet.com.tw/magazine/200209/index1.htm
[25] M. Sugawara,“Self-assembled InGaAs/GaAs quantum dots,” Academic pressc,1999.
[26] 林國瑞,半導體量子結構雷射元件之研究,國立交通大學電子研究所,博士論文,2001.
[27] S.O. Kasap, “Optoelectronic and Photonics Principles and Practices,” Prentice Hall,2001.
[28] D. A. Neamen著,李世鴻譯,“半導體物理及元件,” 美商麥格羅.希爾國際股份有限公司 台灣分公司, 2003.
[29] 林奕佐,半導體量子點雷射之臨界電流密度探討,國立成功大學機械研究所,碩士論文,2004.
[30] L. V. Asryan, S. Luryi, and R. A. Suris, “Internal efficiency of semiconductor lasers with a quantum-confined active region,” IEEE J. Quantum Electron., Vol. 39, pp. 404–418,2003.
[31] L. V. Asryan and R. A. Suris, “Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser,” Semicond. Sci. Technol., Vol. 11, no. 4, pp. 554–567, 1996.
[32] L. V. Asryan and R. A. Suris, “charge neutrality violation in quantum dot laser, ” IEEE J. Select. Topics Quantum Electron., Vol. 3, pp. 148-157, 1997.
[33] R. H. Yan, S. W. Corzine, L. A. Coldren and I .Suemune, “Corrections to the expression for gain in GaAs,” IEEE J. Quantum Electron. 26, pp. 213-216,1990.
[34] Sze S M Physics of Semiconductor Devices 2nd Wiley.
[35] L. V. Asryan and R. A. Suris, “Longitudinal spatial hole burning in a quantum-dot laser,” IEEE J. Quantum Electron., Vol. 36, pp. 1151–1160,2000.
[36] E. H. Perea, E. E. Mendez and C. G. Fonstad, “Electro reflectance of indium gallium arsenide phosphide lattice matched to indium phosphide,” Appl. Phys. Lett., Vol. 36, pp. 978-980,1980.
[37] S. Adachi, “Refractive indices of III–V compounds: Key properties of InGaAsP relevant to device design,” J. Appl. Phys., Vol. 53, no. 8, pp. 5863-5869,1982.
[38] S. Adachi, “Material parameters of In1–xGaxAsyP1–y and related binaries,” J. Appl. Phys., Vol. 53, no. 12, pp. 8775-8792,1982.
[39] L. V. Asryan and R. A. Suris, “Carrier photoexcitation from levels in quantum dots to states of the continuum in lasing,” Semicond., Vol. 35, no. 3, pp. 343–346,2001.
[40] L. V. Asryan, M. Grundmann, N. N. Ledentsov, O. Stier, R. A. Suris, and D. Bimberg, “Effect of excited-state transitions on the threshold characteristics of a quantum dot laser,” IEEE J. Quantum Electron., Vol. 37, pp. 418–425, Mar,2001.